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SECTION I

INTRODUCTION AND SUMMARY

1.1. Introduction

This interim report is submitted in partial fulfillment of documen-

tation requirements for the study: Active Control of Space Structures-Six

A(ACOSS Six). For the successful control of large space structures (LSS), it

is recognized by the LSS community at large that the fundamental problem is
the design of a finite-dimensional compensator to control an infinite

dimensional system (1). To date, numerous theoretical contributions towards
"solving" this problem have been made; however, the resolution of this

problem requires further theoretical research which must be validated through

appropriate design, analysis and experimentation. As a result of our endeavors,

together with exposure to a broad spectrum of knowledge provided by the LSS

community, it is our judgment that the technical issues in LSS control

technology include the following:

(1) LSS Modeling accuracy should be known to within some specified

bounds. Modeling errors will limit achievable control system

performance. These errors may be introduced through initially

assumed structural properties or The truncation process implicit

in the finite-element method. In space, LSS parameters may

vary as a function of thermal gradients, configuration changes,

or depletion of consumables. The more stringent the mission

performance requirements, the greater the LSS model fidelity

required.

(2) Upper Atmosphere Models must be improved and verified by appro-

priate experiments. Accurate knowledge of the external forces

(e.g., earth magnetic and gravitational fields, solar wind and

radiation pressure, drag) acting upon a LSS is necessary to

satisfy precision control requirements.

(3) System Identification is necessary for the purpose of LSS struc-

tural model verification. Parameter identification techniques

must be developed such that modal frequencies, damping ratios,

and mode shapes can be accurately determined. Cnnsideration

must be given to the type of sensors, onboard rzocessing

requirements, data reduction, post-processing requirements, and

control law configuration.

(4) Sensor and Actuator specifications must be determined in order

to assess the applicability of existing hardware, as well as to

provide new directions in research and development.

(5) Control Law Design Methodology must address the following:

(a) The model reduction process which reduces the high-

dimensional finite-element model to a lower order design

model.
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(b) The design method for determining reduced-order
compensators.

(c) The criteria for determining overall closed-loop
system stability.

(d) Direct digital design methodologies and implementation
techniques.

(e) Sensor and actuator placement techniques which yield
maximum observability and controllability.

(f) Sensor and actuator dynamics.

(g) The dynamic interaction of the attitude, vibration, and
shape control laws.

The theoretical research documented in the present report addresses control

law design methodologies with particular emphasis on model reduction, design
methods for determining reduced-order compensators, and criteria for

determining overall closed-loop system stability.

1.2 Research Scope

1.2.1 Scope of Theoretical Research

The enabling technology necessary for successful active control of
large precision space structures requires mastery of at least the following
principal topics:

(1) Reduction of high-order, high-fidelity structural models to lower-
order models suitable for the design of feedback controllers.

(2) Design of fixed-order compensators which ensures stability for

the total closed-loop system.

(3) Analytical techniques for determining overall closed-loop

system stability (including robustness).

The theoretical results documented in this report address these topics.
Given a finite-element modal representation of a LSS, a technique which
aggregates the vibration modes with respect to actuator and sensor influences
has been developed (Section 4). By proper selection of the aggregation
transformation, this reduced-model may be made to approximate the open-loop
performance of the LSS more accurately than methods utilizing direct modal

truncation. New results relative to the extended Kosut design approach to
multivariable output feedback controller design are presented in Section 2.
The stochastic output feedback controller (Section 7) is formulated as the
zero-order limit of the minimum variance fixed-order output feedback
compensator. Section 5 discusses pareto-optimal control (multiple-objective
optimization) with respect to the design of LSS vibration controllers.
Stability margins for observer-based, fixed-order compensators is investigated
in Section 3. The general conditions for LSS closed-loop stabilization by
output feedback control are derived (see Section 6).
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1.2.2 Scope of Applications Research

In order to assess performance, sensitivity, and hardware requirements
of the various active structural control methods, a simple but realistic
evaluation model is necessary. Section 9 describes such a model (Draper
Model #2) which is based on realistic sizes and masses. This model contains
a simple optical system with unclassified performance measures and tolerances.
A line-of-sight (LOS) performance measure (Section 8) is available for
evaluation purposes. Section 10 presents preliminary results of a sinusoidal
disturbance (see Section 9) impact on the LOS performance.

1.3 Summary of Principal Results

1.3.1 Results from Theoretical Research

Previously reported results relating to the algebraic consistency of,
and the structure of solutions to, the Kosut gain equation are substantially
improved (Section 2). Conditions for design-model-independence of free

parameters occurring in such solutions are given. The nature and extent
of performance degradation to be expected due to decentralizing the feedback
information structure is obtained. Stable designs obtained by the extended
Kosut method are shown to be robust. Major theoretical problems that need to
be addressed are: (1) Characterization of systems for which the extended
Kosut approach leads to a stable closed-loop design (at the design model
level); (2) Synthesize a systematic procedure for assigning values to the
free parameters (w,, available) so as to improve stability and/or perfor-
mance of the full-order system incorporating the reduced-order controller.

The stability margins for fixed-order compensators (Section 3) was
investigated. The observer-based fixed-order compensator was assumed since
it is representative of the most general case. The objective was to find
a procedure which would determine the gain matrices such that the full-order,
closed-loop system remained stable. If the resulting equations could be
solved analytically, then explicit stability conditions could be given. Due
to the complexity of these equations, an analytical closed-form expression is
not apparent at this time.

A standard approach to LSS model reduction is to truncate the open-
loop modal representation directly by neglecting certain modes. The aggregate
model development (Section 4) provides a technique for aggregating the
vibration modes (state variables) with respect to actuator and sensor
influences. The aggregation is accomplished by a similarity transformation
which can be implemented by Gaussian elimination or Gram-Schmidt orthogon-
alization procedures. By proper choice of the aggregation transformation,
the resulting model may be reduced to a lower order while retaining an
approximate open-loop performance equivalent to that of the full-order model.
Since the aggregation transformation is nonunique, several approaches were
examined which utilized this nonuniqueness for imposing additional Droperties
on the aggregate design model. The feasibility of these approaches was also
analyzed.

3



Pareto optimality (Section 5) is a practical notion of "multiple-
objective" optimality that is useful - -ilLrol designers faced with multiple
disparate performance objecr'.. A design is Pareto optimal if none of the
multiple objecti.'... can be further improved without degrading any other.
Tho -ppiication of Pareto-optimal control to the design of LSS vibration
controllers provides the control designer with a systematic procedure for
making efficient design tradeoffs. The underlying multiple-objective design
problems relevant to LSS active control are shown via Canavin's modal dash-
pot concept and Aubrun's low authority control theory. Favorable results
were obtained by Pareto optimal designs on the 12-mode Draper tetrahedral
model. Efficient tradeoffs between high damping and low output feedback
gains were demonstrated.

General conditions for closed-loop LSS stabilization (Section 6) by
output feedback control were developed. If these conditions are satisfied by
proper design, asymptotic stability of the closed-loop LSS system is ensured.
The resulting theorems are applicable to the general case of LSS that contain
not only stable elastic modes but also rigid-body modes and unstable modes.
A specific output feedback control design technique is also presented for
integrated control of elastic and rigid-body modes which increases both the
damping and frequency of selected modes. This controller is closed-loop
asymptotically stable as well as robust with respect to modal truncation and
parameter variations. A technique is presented for synthesis of actuator in-
fluences such that control spillover to selected modes is prevented. It is
subsequently shown that this concept is readily extendable to placement of
actuators which minimizes control spillover.

The minimum variance fixed form output feedback compensator has been
proposed as a possible solution to the problem of designing reduced-order
controllers for plants of large dimensions. The zero-order limit of this
compensator is the stochastic output feedback controller (Section 7). A
detailed discussion of the stochastic output feedback controller and its
relation to several other compensator formulations such as the minimum order
dual observer based compensator and the Levine-Athans-Johnson reduced-order
compensator is presented. Lower and upper bounds on the optimal stochastic
output feedback controller cost are derived. These bounds should be useful
in preliminary evaluations of subsequent controller performance. These
bounds may also provide useful starting estimates in iteratively computing
the optimal gains. Presently, this computation represents the major
theoretical problem with the stochastic output feedback controller.

1.3.2 Results from Applications Research

The Draper model #2 (Sections 8, 9) was evaluated with respect to the
sinusoidal disturbances given in Section 9. The preliminary results
(Section 10) show that the addition of damping to individual modes is not
sufficient to suppress a sinusoidal disturbance impact on the steady-state
LOS amplitude error.
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SECTION 2

SUBOPTIMAL OUTPUT FEEDBACK - EXTENDED KOSUT METHOD

2.1 Introduction

2.1.1 Synopsis of Previous Research

The Kosut approach to multivariable output feedback controller design
was originally developed [1] as an alternative to optimal output feedback
approaches [2] in which an acceptable solution to the strongly coupled
nonlinear equations for the feedback gains was seldom obtainable [3]. By
accepting suboptimal values for the control system performance measure,
equations for the feedback gains were obtained that could be solved without
iteration. Part of the price paid for the resultant simplicity of the
design procedure was the lack of a guarantee for stability of the closed-
loop system. As a result, the method found only limited application [4].

Recently, a fresh look at the Kosut approach was taken to determine
its feasibility for use as a design tool for controllers of large flexible
spacecraft [5]. It was immediately recognized that certain assumptions on
which the method is based are incompatible with corresponding properties
of reduced-order modal models that are needed for controller design with
large-scale systems; in particular, the state-to-output observation matrix
in the reduced-order model must have maximum rank. It was observed that
this restriction on the design technique is not in fact necessary. The
linear equation for the feedback gain matrix can be solved in all cases;
in particular, when this equation is rank-deficient, the general solution
for the feedback gains contains free parameters proportional in number to
the rank-deficiency. It was demonstrated how such free parameters can be
selected so as to improve the performance of the full-order closed-loop
system relative to what would be possible if the rank restriction on the
observation matrix were retained [6]. As part of a parallel investigation,
the Kosut approach incorporating the above extensions was compared to other
representative multivariable controller design approaches in the context
of a specific example having certain of the principal features of a large
flexible spacecraft model [5,7]. In spite of the lack of a guarantee for
stability of the closed-loop design model, the performance of the example
system incorporating a Kosut controller compared very favorably with that
using other controller designs. Finally, an algorithm for the numerical
solution of rank-deficient linear equations was developed [8] to enable
application of the extended Kosut approach to high-order design models.

2.1.2 Summary of New Results

New results relative to the extended Kosut design approach appearing
in the present report are briefly summarized. A general criterion for
stability of a closed loop system - at the design model level - for output
feedback systems is given in terms of the basic parameters of the full-order

6
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structural model, including sensor and actuator parameters, and the
feedback gain matrix. A simple and useful, but undesirably restrictive,
sufficient condition for stability is also given. Robustness of stability
is established for designs obtained by the extended Kosut method in the
situation that only rate sensing is used. In addition, certain previously
reported results are improved. In particular, conditions are given under
which free parameters occuring in the feedback gain matrix do not influence
the stability of the design model. Under such conditions, a decision on
their selection can be based solely on considerations of stability and

performance of the full-order closed-loop system. Also, a simplified proof
is given of the general algebraic consistency of the linear equation for
the feedback gains [6].

It has been noted previously [51 that the essential nature of the
Kosut design approach, including extensions, is not fundamentally altered
when a decentralized information structure is imposed in the feedback path.
A closer look at the differences in detail, however, suggests a much more

satisfactory way of representing and understanding the general solution to
the rank-deficient gain equation. A modified representation for the general
solution is presented that is more readily related to the classical algebraic

theory of linear spaces. The algorithm for numerical solution of such
equations is correspondingly modified. A much clearer understanding of the
impact of decentralization is revealed by a study of its implications upon
performance for a specific system. Performance of the two-mass oscillator
system incorporating several decentralized Kosut designs is examined.
Specific limitations on system performance are observed when compared with
corresponding centralized designs.

The section is concluded with a brief statement of important questions
that remain to be resolved regarding the extended Kosut approach.

2.2 Notation

In order to be self-contained, the notation to be used is briefly
summarized. It is assumed that the structural dynamics of systems to be
discussed can be adequately represented by a finite-element model:

Mj + Kq = f (2-1)

where q - (ql,... qn)T is the vector of generalized physical coordinates,

M:nXn is the (positive definite) mass matrix, K:nxn is the (positive

semidefinite) stiffness matrix, and f R (fl f... f)T is the vector of forces

applied to the structure. Equation (2-1) may be transformed to an equivalent
representation in modal coordinates:

+ S2 OTf B uTB (2-2)
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where 2:nxn is the diagonal matrix containing squares of the natural
2 2

frequencies wl,... ,wn, 4 :nxn is the nonsingular matrix whose columns are

the structural mode shapes n,... , n, normalized such that

0TMP - I n 0TKO = Q 2 (2-3)
n

B A :nxm is the actuator influence matrix for the control u E (Ul,...,UM)

and n (nl .... n) T is the vector of modal coordinates defined by

q = n (2-4)

Superscript "T" denotes matrix transpose, and the notation I denotes then

nxn identity matrix. The linear measurement equation has the form:

y = Cpq + C (2-5)

T

where y 2 (y,... ,yg) is the vector of system outputs, and Cp :xn, C ixn

are the displacement and rate measurement coefficient matrices, respectively.

The structural model (2-2) may be placed in a convenient state space

form as follows. Without loss of generality, it can be assumed that the
components of n have been reordered so that the first N (N 5 n) of them are

the selected critical modes nC E (n1
' ... ,% T), and that the remainder are

r T 2
residual modes R (N+''.,n n) . Corresponding submatrices c:NxN,

:(n-N)x(n-N) of 02 and 0C:nXN, 0 R:nx(n-N) of 0 are defined similarly.

With x = (TIC9 C' nR' R as a state vector, the structural model (2-2),

(2-4), (2-5) becomes:

= Ax + Bu (2-6)

y = Cx (2-7)

8
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where

0 1 N I0

2I T
0 A T

A- -F-T- B A C
0 In_ 0

0 1n-N

2 T
o 

0

1jp C C C D

Using residual mode truncation as the raodel reduction process, a reduced-

order model with the state XC ( C' ;C) is obtained:

: x Acxc + Bcu (2-8)

YC M C (2-9)

where

Ac __ [i tl , BC

CC [Cc i CVtC

9
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2.3 New Results for Centralized Controllers

2.3.1 Stability and Robustness for Output Feedback Designs

2.3.1.1 General Criteria for Stability

As noted previously, one of the principal objections to the use of
the extended Kosut method for controller design is the absence of any
useful conditions which guarantee closed-loop stability even at the design
model level. The approach taken to developing such conditions has been to
try to discover an appropriate subclass of the systems (2-8), (2-9) being
considered for which the extended Kosut approach leads to a stable closed-
loop system at the design model level.

The first result characterizes the eigenvalues of the closed-loop
design model for general output feedback systems in terms of fundamental
model parameters.

Theorem 2-1. Assume that the reduced-order model (2-8), (2-9) is connected
by an output feedback law: u - Gy . Then the eigenvalues of the closed-

loop system are the roots of the (2N)th degree polynomial equation:

det I CT [-2M + ABAGCv - (K- BAGC)] C } 0 11 (2-10)

The proof is given in Section 2.5. A remark about Equation (2-10) is

appropriate. Since the mode shapes 1 ,...,n are linearly independent,

the matrix DC = [$I1 ...E : ON]:nxN has maximum rank. It does not follow that
equation (2-10) can be replaced with the (2n)th degree polynomial equation:

det [ X2M + XBAGCV - (K - BA GCP) ] - 0 (2-11)

The latter equation is easily recognized as the closed loop characteristic
equation for the full-order structural model (2-1), (2-5) connected with the
output feedback law u - Gy. (Set -= iw in equation (2-11) to obtain an
equivalent, more familiar, form.) Equation (2-11) has 2(n - N) more
solutions than equation (2-10).

A simple, but useful, sufficient condition for closed-loop design
model stability is based on Theorem 2-1. For clarity, the result is
presented for the case where rate sensors only are used (Cp - 0).

Corresponding results for the general case are easily obtained.

10



Theorem 2-2. Assume a closed-loop structure as in Theorem 2-1 with Cp M 0.T

Suppose that there exist 6 > 0, i1 - ,...,N such that 0c B GCv0 - diag (-6
i C A V C ag

Then the closed-loop system is stable. 0

The proof is given in Section 2.5. This result is useful for establishing
robustness of stability.

Specializing from general output feedback systems to those designed
using the extended Kosut method, one may ask under what conditions the
feedback gain matrix generated by that method satisfies the hypotheses of
Theorem 2-2. This question has not been answered in general. It should
be evident, however, that Theorem 2-2 is by no means necessary for design
model stability; it is in fact a quite restrictive condition. This may be
seen by examining the condition in the context of the two-mass oscillator

T 2 T 2example worked out previously [5;Sec. 6]. In that case, B Cc - (A2 GCT0,
a scalar (hence diagonal), where

2 2

-1C + C 0 -

G - G(a;c,6) 2
+ 6 1 /02

The stability condition of Theorem 2-2 reduces here to the condition that
G be negative definite, which requires [10] that:

2
2 2 > 0

and

C o 2 2 61 2] > 0

However, it was seen [5;Sec. 6] that this closed-loop design model AC + BcGCc

is independent of the free parameters C and 6, and is in fact stable as
long as a > 0.

11 -J-~ - --



2.3.1.2 Robustness of Stability for the Extended Kosut Method

The robustness question is examined in two parts. First, the
sensitivity of the design model closed-loop eigenvalues is examined relative
to changes in the feedback gain matrix. This is applicable to any output
feedback system. Second, the sensitivity of the gains generated by the

extended Kosut method is examined relative to changes in the fundamental
structural model parameters. For clarity, it is again assumed that rate

sensing only is used (Cp = 0).

Theorem 2-3. Assume a closed-loop structure as in Theorem 2-1 with Cp = 0.

The mapping which assigns to each output feedback gain matrix the set of

closed-loop elgenvalues is continuous. 0

The proof is given in Section 2.5. The significance of Theorem 2-3 is
as follows. Suppose that for a particular gain G the system is stable.

0 0 0
Then the corresponding eigenvalues X 0 (X1,... , 2N) lie in the Cartesian

product of the sets Re(. i) < 0, an open set in real Euclidean 2N-space.

Theorem 2-3 says that there is an open set containing G in the space of

mxk real matrices for which the corresponding eigenvalues also satisfy
Re( i ) < 0, i = 1,... ,2N. It should be noted that Theorem 2-3 is

essentially without significance if at least one stable set of eigenvalues
cannot be found (cf. Theorem 2-2).

For the following result, it is assumed that structural model reduction
is by truncation (equations (2-8), (Z-9)), and that a specific reference
system and a specific suboptimal performance measure for the extended Kosut
method (minimum error excitation) have been chosen. The mapping described is

then well defined.

Theorem 2-4. Assume Cp = 0. The mapping which assigns to each mass-

stiffness matrix pair in Equation (2-1) the extended-Kosut feedback gain
matrix (Moore-Penrose inverse particular solution [81) is continuous. 0

The proof is given in Section 2.5. Together with Theorem 2-3, this result

shows that if a stable design can be achieved by the extended Kosut method,
then stability is retained under appropriately small changes in the
fundamental structural model parameters.

2.3.2 Refinement of Previously Reported Results

Extensions to the Kosut method reported previously [5] are based on
the existence and properties of solutions G:mxk to the Kosut gain equation:

G(CCPCcT ) = F*PCCT (2-12)

12
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where F*:mX2N is the state feedback gain for the stable reference system used
in the suboptimal design, and P:2Nx2N is the positive definite Lagrange
multiplier matrix obtained from the Liapunov equation:

(Ac + BcF*)P + P(Ac + BcF*)T + 12N = 0 (2-13)

It was shown [5;para. 6.2.3.31 that Equation (2-12) is solvable regardless

of the rank of CC (equivalently, rank of CCPCJ), and that in the rank-

deficient case (say, rank Cc = r < Z ! 2N), the general solution has the form:

G(r) = GO + rs (2-14)

where G0 is a particular solution of Equation (2-12), r is a matrix whose

m.(Z-r) non-zero elements are free parameters, and S is an appropriate non-
singular matrix.

In a detailed design example, it was observed that the eigenvalues of
the closed-loop design model were independent of the (two) free parameters
in the feedback gain matrix. Since the performance (as contrasted with the
stability) of the design model is not of practical interest, it was possible
to base the selection of free parameter values solely on full-order system
performance considerations. The question arises as to what conditions
characterize this "independence" in general. To begin, a very simple
sufficient condition can be stated.

Fact 2-5. Assume a closed-loop structure as in Theorem 2-1; refer to
Equation (2-14). If BCrSCC = 0, then the eigenvalues of the closed-loop

design model are independent of the free parameter matrix r. 0

The proof is self-evident, since both G(r) and GO generate the same closed-

loop system matrix. It is worth observing that this condition (in fact,
even the stronger condition: rSCC = 0) has been satisfied in all numerical

examples studied to date. The following theorem fully characterizes the
independence condition.

Theorem 2-6. Assume a closed-loop structure as in Theorem 2-1; refer to
Equation (2-14). The eigenvalues of the closed-loop design model are
independent of the free parameter matrix r if and only if Ac + Bc G(r)Cc and

A + B C GCC are similar; i.e., if and only if there exists a nonsingular

matrix Q:2Nx2N such that:

[AC + B cG(r)Cc]Q - Q[A C + BcGoC C ]  0

13
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The proof is given in Section 2.5. The full implications of this freedom
of choice in selecting a feedback gain matrix with the extended Kosut
method have not yet been uncovered. Performance improvements for low-order
vibrating systems have already been demonstrated [5,6]. It is worth
observing, however, that the question of effective use of available freedom
of choice in selections of feedback gains is an important, and largely
unexplored, question for general multivariable feedback systems [13;p.51].

Proof of the general algebraic consistency of Equation (2-12) has
been considerably simplified (cp. [6;Theorem 2], [5;Theorem 6-6]). Since
this is a principal result, the streamlined proof is of interest. Details
are given in Section 2.5.

2.4 New Results for Decentralized Controllers

2.4.1 New Perceptions Suggested by Decentralization

The discussion of decentralization in this section of the report is
restricted to the nature of the information structure in the sensor-to-
actuator feedback connection. Totally decentralized systems which include
decentralized plant structures are not treated. Specifically, it is assumed
that the information for driving a given actuator is derived from a (possibly
proper) subset of all available sensors, and that the collection of sensors in
this subset is (in general) different from one actuator to another. In
symbols, the sensor combinations for transmission to each actuator are
generated from the state vector as follows:

i i ci:= .

y = Cix .C :Zx4N ; i = 1,... ,m (2-15)

Equation (2-15) replaces Equation (2-7) in a decentralized full-order model.
The feedback connection is made by:

u i , gi: ixi ; i = 1,...,m (2-16)

Remark: In the special case that the components of each yi are selections from

the components of a fixed vector y =(yl,... y)T Equation (2-16) may be

written in the form u = Gy, where u Z (Ul, .... um) , and G = [g ij has the

property that g j = 0 if the component yj of the fixed vector y is not also
i

a component of the output vector y associated with ui. In general, however,

this situation will not necessarily exist.

14



The Kosut gain equations corresponding to Equation (2-12) for a

controller with decentralized feedback structure are [5]:

Ti I i T , T

gT CcPc ) = F*PCC  , i = 1,... ,m (2-17)

where F*:x2N are the rows of F*, and C i:X x2N are the matrices corresponding
i C i

to Equation (2-15) for a reduced-order model. The structure of solutions to
algebraically consistent equations of the form (2-17) may be expressed in
the following form.

Theorem 2-7. Let A:Xxv, b:1xv be matrices for which the equation xA = b

has a solution x0 . Denote r 4 rank (A). The general solution of this

equation has the form:

x = x0 + yTS (2-18)

where the X-r row vectors of S:(X-r)xX form a basis for the null space of

A (viewed as a mapping of E into E ), and the (X-r)-vector y is arbitrary. l

The proof is given in Section 2.5. This result immediately suggests an

appropriate reformulation of previously reported solution structures for
homogeneous matrix equations [cf. 5, Theorem 6-3; 6, Theorem 3; 8, Theorem 3-9]

which sharpens the statement and identifies the true nature of the "S"
matrix.

Theorem 2-8. Let A:Xxv be a matrix. Denote r = rank (A). The general

solution of the equation XA = 0 has the form X = 1S, where the X-r row

vectors of S:(X-r)xX form a basis for the null space of A (viewed as a

mapping from E into E ), and the matrix r:px(X-r) is arbitrary. 0

This result shows that the last A-r rows of the S matrix in Theorem 6-3 of

[5] and the last k-r rows of the UT matrix in Theorem 3-9 of [8] correspond

simply to different choices of a basis for the null space of A.

Step 4 of the algorithm for numerical solution of the Kosut gain

equation [8, Sec. 3.5] should now be modified so as to be consistent with
Theorem 2-8.

Step 4 (revised). Find the general solution.

(a) Select an m.(Z-r) matrix r of free parameters.

15



(b) Choose row £-vectors s ,.... s£_ that form a basis for the null
space of A and form the matrix

s1I

SS

s2i-r

(One possible choice is the set of vectors obtained by transposing
columns r+l,...,£ of the matrix U from Step 1(a)).

(c) Compute the homogeneous solution X c rS.c

(d) Compute the general solution X = X + X , using the results of
Steps 3(b) and 4(c). 0 p c

Step 4(b) makes explicit the fact that there is considerable freedom in
choosing the matrix S (although not complete arbitrariness). Specific
approaches to exploiting this freedom of choice await further investigation.

2.4.2 Performance Implications of Decentralization

There are a number of reasons why a decentralized information structure
might be incorporated in a physical system. For a very large structure with
many sensors, the computational burden of incorporating information from
all of the sensors in the determination of control signals to each actuator
may far outweigh the advantages when a centralized processing unit is used.
If numerous processing units are distributed throughout the structure, it
may not be feasible to transmit information from all the sensors to each
processing unit. On the other hand, there are cases in which the only
relevant information is that from nearby sensors (e.g., in the case of
shape control), in which case information from all the sensors at each
processing unit would be largely unnecessary. Whatever the reasons, however,
it is important to take these information structure constraints explicitly
into account in the mathematical model used for controller design and eval-
uation. In general, one would expect some loss in performance (by whatever
measure) as the price of operating with restrictions on the internal
information structure for determining control signals.

A clear picture of such performance implications does not emerge from
the design equations themselves. In fact, the gain equations (2-17) for the
decentralized controller have exactly the same mathematical structure as the
gain equation (2-12) for the centralized controller. Hence, all the results
obtained for the latter (e.g., algebraic consistency, structure of general
solution) apply to the former. Therefore, some design calculations were
made on a specific representative system (the two-mass oscillator example [5])

16



to get at least a snapshot of the nature of performance degradation, if any,
associated with decentralization of the controller. The oscillator was
assumed to have one force actuator and one rate sensor associated with each
mass [5; Fig. 2-2]. Each of three possible types of decentralization in the
feedback structure was studied: (a) fully decentralized: uI = ul(Y 1

u2 i u2(y 2 ); (b) partially decentralized with actuator I localized:

u= ul(yl), u2 = u2 (yl, y2 ); (c) partially decentralized with actuator 2

localized: u I  uI(Y I, y2 ), u2 = u2 (y2 ). The reference system for the

Kosut design was taken as determined in previous examples [5]. Hence F
and also P, [cf. Equation (2-13)] are as previously computed:

F* 0.066389774 0.51609641
*1

F* = 9

* L-0.028 24 15 8 1 -0.21954252]

1.1373892 -0.5

-0.5 7.4375655

2.4.2.1 Fully Decentralized Design

Recall that the state vector for the reduced-order model
(cf. Equation (2-8)] is xC - (I25 2) , that residual mode (n1) dynamics are

being ignored, and that Equation (2-4) relates the physical and modal
coordinates. The specifications for this configuration may be stated:

1= 2 - i
y = qlj y = q2. Accordingly, the matrices C corresponding to

Equation (2-15) for the reduced-order system are:

Since each C has maximum rank, each of the gain equations (2-17) has a
C

unique solution. The solutions are:

= 0 =
0

where a0 = 0.59708155 is the reference-system-dependent parameter occurring
in the solution of Equation (2-12) for the centralized design [5, Eq.(6-43)].
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Referring to the remark following Equation (2-16), we may write -the
feedback connection as u = Gyc, where

[4 01= 0

T _00 g.2 0

The closed loop design model has the same characteristic polynomial as in

the centralized case:

2 + 0 (0 2 T02)X + 2

It is stable, with w = w2 (open-loop critical mode frequency), and = 0.1

(design objective). Note that, in contrast to the corresponding centralized
design, there are no free parameters in the solution for the feedback gains.

The matrices Ci of Equation (2-15) for the full-order system:

1  A 0 2 0 I 2 A 0 2 0 1@

are used to connect tihe reduced-order controller to the full-order system
via Equation (2-16). The characteristic polynomial for the closed-loop
full-order system is

g T C 1
det + B

( [TJ 2 4N)/

x [2 + (02 T 2 ), , .2 [,2 + oo(0G,1T 01)X + W21 2- T01

Dynamic characteristics of this system are:

Mode 1 (critical): w2C = 2.5851902 sec-1

C2C = 0.099939961

Mode 1 (residual): w = 0.54704429 sec-

C = 0.34631083

18



Some effects of decentralization on overall system performance can be seen
by comparing the time response in Figure 2-1 and the frequency response in
Figure 2-2 with the corresponding plots for the centralized design
[5; Figs. 6-7 and 6-8, respectively]. Noticeable degradation does occur, and
is traceable to the reduction in damping of the residual mode. Nonetheless,
the degradation is not nearly as severe as that occurring when the sensor
on the outer mass of the two-mass system is deactivated while retaining a
centralized information structure on the remaining available sensor
[5; Figs. 6-13 and 6-14, respectively].

2.4.2.2 Partially Decentralized Design: Actuator 1 Localized
1

The specifications for this configuration may be stated: 
y =

y)T T i corresponding to Equation (2-15)12= q' q h42aedmtie CC

for the reduced-order system are:

I A 21]2A0
C = I 1 C C

Solutions to the gain equations (2-17) are as follows:

-GO0 , g'T(6) = + 1 24 ]
where 6 is a free parameter. An equivalent feedback connection of form
u = GyC exists and is:

9g 0 0

G(6) 2

gT(6) 
0 + 1/0

The characteristic polynomial for the closed-loop design model is the same
as that for the preceding design; in particular, it is independent of the
free parameter 6.

The matrices C i of Equation (2-15) for the full-order system are:

C1  0 1 0 0 1 C 0
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To assist in determining an appropriate value for the free parameter,
the modal closed-loop equations are developed:

+ aO2T 2 + W 2  [$ 2 Ti) -6 det 0] (2-19)

+ [(iTij) + et (/ )] i + =~n [_GO( 2 T1)]

(2-20)

Several possibilities for selecting 6 are as follows: (a) choose 6 so that
the coefficient of l in Equation (2-19) vanishes; (b) choose 6 so that the

coefficient of 1 in Equation (2-20) attains some desired value; or

(c) some combination of (a) and (b). Selection (a) eliminates the effect on
the critical mode of residual mode dynamics, whereas selection (b) approx-
imates a specification for the residual mode damping. Past design examples
have indicated that failure to damp the residual mode strongly and adversely
affects the full system performance, and that the spillover effect admitted
by Equation (2-19) is a lesser concern. Since selection (a) will not affect
residual mode damping, whereas selection (b) will tend to reduce the
spillover problem indicated by Equation (2-19), selection (b) is made. Thus:

0 A 2C - aO( 1T 1)
6 ffi i 1 0.33580542

where 1D is chosen to be IIv'2i. The gain values then become:

G(6 0 -0.59708155 0

-0.33580542 -1.3864866

With this connection, the dynamic characteristics of the system are:

Mode 2 (critical); W2C = 2.5914658 sec-1

C2C = 0.10021320

-1
Mode 1 (residual): wIC = 0.54571957 sec

CIc = 0.70633967

22
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Performance of this design is so close to that of the corresponding
centralized design that no degradation can be observed from the plots.
Figures 2-3 and 2-4 may be compared with the corresponding plots for the
centralized system [5; Figs. 6-7 and 6-8, respectively]. Consequently,
Figures 2-3 and 2-4 may themselves be viewed as representing the
centralized system time and frequency response, respectively, for the
purposes of the comparisons in this section.

2.4.2.3 Partially Decentralized Design: Actuator 2 Localized

The specifications for this configuration may be stated:
Yl = (q I Y = q2. The related matrices C corresponding to

Equation (2-15) for the reduced-order system are:

I A r 21 2 A [F 21
CC =[0 J CC 0 2

Solutions to the gain equation (2-17) are as follows:

[ Ta0 + C 2 /0 2 C 2 = 0

where C is a free parameter. An equivalent feedback connection of form
u = GyC is:

2
2T 0 +

G(C = [...ci0 +e

The characteristic polynomial for the closed-loop design model is the same
as for the fully decentralized design; it is also independent of the free
parameter C.

The matrices Ci of Equation (2-15) for the full-order system are:

I A 0 02 0 €I , 2 A 0 .2 0 42
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The modal closed-loop equations (to help select c) are:

+ a 0(02 02)rj + W 12 [,aO (.2 To,) + C det ]1

iJ. [0 1 T1  - det 1~ + WA1  A ~(2Ti]f 2

(2-21)

Following the same arguments as in the preceding section, the parameter C
is ciosen so that the coefficient of in Equation (2-21) has the desired
value C ID =4 1/.2:

0 A 24 1D . -1°0(GIT 0I)

det 1 /- 1 ) 0.92785918

The gain values then become:

G( 0 [-0.99178405 -0.927859181

0o -0.59708155J

With this connection, the dynamic characteristics of the system are:

-1
Mode 2 (critical): w2C = 2.5683141 sec

2C i 0.098354234

-1
Mode 1 (residual): w]C = 0.55063889 sec

1C = 0.71291349

The only performance degradation relative to the centralized design

observable from the plots is in the frequency domain, and is quite minor.
The frequency response shows slightly higher magnitudes near w = w

(open-loop critical mode frequency), and slightly higher phase shifts for

W W2" Figures 2-5 and 2-6 may be compared with the corresponding plots

for the centralized system [5; Figs. 6-7 and 6-8, respectively].
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2.4.2.4 Remarks on Performance Comparisons

A sun mary of the design studies on the two-mass oscillator example
for all of the centralized and decentralized designs discussed in this
section is shown in Table 2-1. Data for the centralized designs was
previously reported [5,7].

Broad conclusions regarding the effects on performance of decen-
tralizing the feedback information structure cannot be drawn from these
few designs on such a low-order system. However, several observations are
worth noting. First, noticeable performance degradation did occur, and the
degree of degradation increased as the degree of decentralization increased.

Second, the worst performance degradation (for the fully decentralized
configuration) was not as bad as one might have expected. Finally, the
design flexibility due to the free parameters occurring in the designs with
partial, but less than total, decentralization was sufficient to eliminate
(nearly) all performance degradation.

2.5 Proofs of Theoretical Results

The proof of Theorem 2-1 depends on the following two facts.

Fact 1. D MO = I , 4 T C  = S2
C C N' CC C

Proof. It follows from a block matrix representation of Equation (2-3)

that (0 i)T M4 j = i and (qi)TK ) = 2 , jW = 1,..., n, where 6 is the
i i ii, ij

Kronecker indicator function:

= ( 1 i = j
ii 0, i ji

In particular, these relations hold for i,j = 1,..., N.

Fact 2. (Rosenbrock [91). If A, B, C, D are matrices, with A, D being

square and A nonsingular, then:

det --- i = det A det (-CA B + D)
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Proof of Theorem 2-1. The closed-loop system matrix for the model (2-8),
(2-9) under the connection u = GyC is:

A -+ B CcBvC =

2 CCPTBGC( )T C(
C C A P TC C C

It is easily seen from the properties of determinants that the vanishing of

det (A + B GC ) is equivalent to the condition: det [S22 + 4TBAGC ] = 0.
C C C C %A C% 0

This proves result (2-10) for the case X = 0. For X # 0, the matrix -XIN
is nonsingular. Using Fact 2 and the properties of determinants leads
to:

det (C+ B GC X1 1)NXN/1\N det X 2 1+ (PT [ (C+C)0 2

Result (2-10) follows by an application of Fact 1. 5

Proof of Theorem 2-2. Denote A _ diag (-6 ). Using Theorem 2-1 and Fact 1,

the eigenvalues of the closed-loop system are Reen to be the roots of:

0 - det--
2 N + 2) = (_)N HN(2 + 61A +

i=l(2+6i 2

Since each 6 > 0, all eigenvalues have negative real parts.

Proof of Theorem 2-3. Denote by G I-Y_> (A1 ... 'Y2N) the mapping

described in the theorem. The function y is a composition 3  0 Y

of the following three mappings: (1) G i-a T B
C A V C'

(2) Z 2 pz(), where pz(A) M det X2I + Z + ) ; and

1Y3 >z(I 
Z+Q

(3) P(.) 2N ( .... , 2N), the roots of p(X) = 0. It can be shown that

Y19 Y2' and y3 are continuous; hence y is continuous. Continuity of y3 is

based on the well-known root-coefficient relations for polynomial
equations [111.
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Proof of Theorem 2-4. Denote by (M,K) I > G the mapping described in
the theorem. The function 8 is a composition 3 0 2 0 a1 of the following

three mappings: (1) (M,K) 1> (2, )) where 2 / diag 2 2!

2 being the roots of det (-w2M + K) = 0, and 0 1 bei
i 1 * n - being

the solutions of -wi' + = 0 such that Equation (2-3) holds;
2 2

(2) ( 2 0) -> (AcV Bc, Cc), the latter matrices being defined by

Equations (2-8), (2-9); and (3) (Act BC, CC) --> G H (F*PcT) (cPCcT) ,

where F* is the state feedback gain for the Kosut reference system, and P

is the solution of Equation (2-13). The superscript "1" denotes the
Moore-Penrose inverse [8]. It can be shown that 1, 829 and 83 are
continuous; hence is continuous. I

The proof of Theorem 2-6 is self-evident from the following general
result.

Fact 3. Two square matrices are similar if and only if they have the same

set of eigenvalues.

Proof. (Only if) This is a well-known result [12; p.144].

(If) Since both matrices have the same set of eigenvalues, they are each

similar to the same Jordan block matrix. Since similarity is an equi-
valence relation, the matrices in question are similar to each other.

Simplified proof of Theorem 6-6 of [5; Sec. 61.

Denote E . Since the rank of a matrix is equal to the number of

its linearly independent rows: rank (CcPCc T ) rank (ECcT). Conversely,

suppose that this inequality is strict. Denote r A rank (ECcT). Using

the fact that rank (CcPCC T ) = rank (Cc) when P is positive definite, it

follows that rank (CC) < r. But then it follows easily [12] that

rank (ECcT)  min rank (E), rank (CcT < r, which contradicts the

definition of r. Hence, rank (CcPCcT ) rank (ECcT). I

The proof of Theorem 2-7 is based on the following well-known result
from linear algebra [12].
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Fact 4. Letd be a linear transformation defined on a vector space X.

Then:

dim [Range (.W)] + dim [Null (.4)] = dim (X)

Proof of Theorem 2-7. Define the map x 1- > xA on the row-space E
Since rank (W4) = rank (A) = r, it follows from Fact 4 that Null (,), the
null space of ,d, has dimension A-r. If r = , then Null (,W) = 0 and x0
is unique. Otherwise, r < X, so there exist row vectors Sl,...,s _r

that form a basis for Null (.4). Denote S s [sT I T ]. LetX ! SX-r

x E: E satisfy xA = b. Then (x - x0) E Null (,V), so there exist constants

SY I . -r such that

x = L X = YTs

Conversely, any vector of form (2-18) satisfies the equation xA = b. I

2.6 Conclusion

A capsule summary of the results reported in this section may be
stated as follows. First, certain previously reported results relating to
the algebraic consistency of, and the structure of solutions to, the Kosut
gain equation are substantially improved. Moreover, conditions for design-
model-independence of free parameters occurring in such solutions are given.
Second, a clearer idea of the nature and extent of performance degradation
to be expected due to decentralizing the feedback information structure is
obtained. Finally, stable designs obtained by the extended Kosut method
are shown to be robust.

However, some substantial open questions, both in theory and in
application methods, must be resolved before the extended Kosut approach
can become a competitive method for large space structure controller design.

Major theoretical problems:

1. Characterize systems for which the extended Kosut approach leads
to a stable closed-loop design (at the design model level).

2. Synthesize a systematic procedure for assigning values to free
parameters (when available) so as to improve performance of the full-order
system incorporating the reduced-order controller.
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Major applications problems

1. Develop the algorithm for solving the Kosut gain equation [8]
into an effective design tool.

2. Compare the extended Kosut method with several other represen-
tative design methods on more sophisticated structural models.

LIST OF REFERENCES

1. Kosut, R.L., Suboptimal Control of Linear Time-Invariant Systems
Subject to Control Structure Constraints, IEEE Trans. Automatic
Control, Vol. AC-15, pp. 557-563, October 1970.

2. Levine, W.S. and Athans, M., On the Determination of the Optimal
Constant Output Feedback Gains for Linear Multivariable Systems,
IEEE Trans. Automatic Control, Vol. AC-15, pp. 44-48, February 1970.

3. Bingulac, S.P., Cuk, N.M., and Calovic, M.S., Calculation of Optimum
Feedback Gains for Output-Constrained Regulators, IEEE Trans. Automatic
Control, Vol. AC-20, pp. 164-166, February 1975.

4. Petkovski, Dj. B. and Rakic, M., On the Calculation of Optimum Feedback
Gains for Output-Constrained Regulators, IEEE Trans. Automatic Control,
Vol. AC-23, p. 760, August 1978.

5. Lin, J.G., Lin, Y.H., Hegg, D.R., Johnson, T.L., and Keat, J.E., Theory
of Design Methods, Interim Technical Report, Actively Controlled
Structures Theory, Volume 1, Charles Stark Draper Laboratory
Report R-1249, April 1979.

6. Hegg, D.R., Extensions of Suboptimal Output Feedback Control with

Application to Large Space Structures, Proc. AIAA Guidance and Control
Conference, Danvers, Mass., August 10-12, 1980.

7. Lin, J.G., Hegg, D.R., Lin, Y.H., and Keat, J.E., Output Feedback
Control of Large Space Structures: An Investigation of Four Design
Methods, Proc. Second VPI&SU/AIAA Symposium on Dynamics and Control of
Large Flexible Spacecraft, Blacksburg, Va., June 21-23, 1979.

8. Strunce, R.R., Hegg, D.R., Lin, J.G., and Henderson, T.C., Final Report,
Actively Controlled Structures Theory, Vol. 1, Charles Stark Draper
Laboratory Report R-1338, December 1979.

9. Rosenbrock, H.H., State-space and Multivariable Theory. New York:

Wiley, 1970.

10. Bellman, R., Introduction to Matrix Analysis, second editicn. New York:

McGraw-Hill, 1970.

34



11. MacDuffee, C.C., Theory of Equations. New York: Wiley, 1954.

12. Thrall, R.M. and Tornheim, L., Vector Spaces and Matrices. New York:

Wiley, 1957.

13. Wonham, W.M., Linear Multivariable Control: a Geometric Approach,
second edition. New York: Springer-Verlag, 1979.

35

I - ____ -- - . '. j



SECTION 3

STABILITY MARGINS FOR FIXED-ORDER COMPENSATORS

3.0 Abstract

In order that a theory can be developed for establishing an upper
bound on closed-loop stability when evaluating a fixed-order compensator
with higher-order evaluation models of large space structures, the closed-
loop dynamic equations were derived first (see Subsection 3.1). As an
initial effort, the common observer-based fixed-order controllers were
considered; the design of such compensators was assumed to be based only
on a reduced-order model formed by truncating all but a fixed number of
vibration modes. The resultant closed-loop dynamic equations were then put
into the standard second-order matrix form in two different ways, all having
a certain form of effective damping and stiffness matrices.

The closed-loop effective stiffness matrices were not symmetric;
their symmetrization was then studied, so that standard stability conditions
on second-order dynamics could be applied. Two steps were proposed:
symmetrizing transformation of the coordinates and orthonormalizing
transformation of the new eigenvectors. (See Subsection 3.2.) The closed-
loop dynamic equations were then put in a modal form similar to the open-
loop case. Determining the closed-loop stability and its margin would

then be a straightforward matter after carrying out this two-step procedure,
say, by a computer. Analytic expressions for the closed-loop stability
conditions (with higher-order evaluation models), however, were not easy
to derive.

The stability of the closed-loop system having a fixed-order compen-
sator could be looked at directly in the frequency domain. In other words,
the shortest distance of the closed-loop poles to the imaginary axis of the
complex plane could determine the upper bound of closed-loop stability.
An example was worked out analytically in detail (see Subsection 3.3) to
demonstrate that it would be very difficult to obtain an analytical
expression of closed-loop stability margins from this viewpoint even for
a structure as simple as having only two elastic modes.
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3.1 Closed-Loop Dynamic Equations with Observer-Based Fixed-Order

Compensators

Assume that an open-loop modal representation of 
the large space struc-

tures, in the form

S "+ (G + D)i + i 2n = u

y = Pn + Vi (3-1)

is available, and that the critical modes are the low-frequency 
ones while the

residual modes are of high frequencies. G and D are gyroscopic and damping

matrices respectively; Q is a diagonal matrix of natural 
frequencies. Let X,

m, n, n , and n denote the numbers of outputs, inputs, modes, critical modes,
C r

and residual modes, respectively. Consider the following partitioning.

Ql 2 0
ic c

S2 
(3-2)

G -G D DGcc -cr cc cr

G = -G ,D = D =

-GT G DT

cr rrD D
L L cr rrj

We= [ 1' = [Pc Pr
]' V = [Vc Vr] (3-3)

We presume that the parameters of the full model are available, but that the

design is to be based essentially on the critical-mode part of the model. The
feedback controls that will be considered are of the form

u Kf + L (3-4)
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where

+ (G + D )n + R 2 u+H(y-P - V n) (3-5)

In (3-5), q has the form of an observer for n . Note that it is driven by

the output, y, which contains r' and is thus not actually an observer of nc

in the formal sense. Evidently, (3-5) involves only the critical mode param-
eters. The free design parameters are the gain matrices K, L, and H, and we
want to know if they can be chosen by a procedure so that (3-1), (3-4), (3-5)
yield a stable closed-loop system, particularly when G and D are very small.

The reason for assuming this form is that it is representative of a
range of practical schemes for finding gains. Note, for instance, that K, L,
could be designed on the basis of an LQ control problem, and that H could be
designed on the basis of a Kalman filtering problem or as a model matched
filter for the critical modes. However, these methods have not been shown to
lead in general to closed-loop stability, and more refined conditions on
their application are needed.

The standard coordinates for the closed-loop dynamics are C and
c

We write these in second-order form rather than state-space form. Let

el
x [c (3-7)

nr .

Then

G +D + HV 0 HV + G + D
c r cr

HV G + D a L HV-GT + DT -G TL G + D

L cr cr cr cr r rr rr

Effec tive damping
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0m

-HP Q2 K - x -0 (3-8)
C c r

0 -a K Q 2 _J

r r

Effective stiffness

Note that only 3 zero-blocks have been created by the observer. These mat-
rices are otherwise not particularly well-structured for further purposes, so
we were led to consider the following alternative expression

x= [s:
L nrj

We then have the following much more convenient form

G + D - L +HV -HV -HVcc cc c c c. r
+ ELG + D G + D

c cc cc cr cr
-GT + DT G + D

r cr cr rr r

2 cK:+HPc HP -HP] =0]

c c c c r

+ _SK Q2 0 x 0f (3-9)
c c

L aK0 J

or

+ D cc L + HV -HV - a K HP

+ + x = 0-c G + [ -SK Q] (3-10)
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3.2 Symmetrization of Closed-Loop Stiffness Matrices

We note that the closed-loop system can be put into second-order form,
but it is not clear whether this could be transformed to an equivalent de-
coupled system

xx + +2- = o (3-11)

where

= -T , = D T, and 2 is diagonal.

If it could, then a rather simple stability test for second-order systems

could be applied. For example [11, [21, when 2 is positive definite, system
(3-11) is asymptotically stable if and only if the following associate system

+ + *+2z = 0

y = D

is completely observable.

The conversion of (3-10) to (3-11) proceeds in two steps:

Step 1: A symmetrizing transformation, S, which converts (3-10)
so that its last term is symmetric.

Step 2: An orthonormal transformation, 0, which puts the result of
Step I into modal form.

Step 1

Suppose we perform a change of variable S as follows:

Sv = x (S nonsingular) (3-12N

For simplicity, rewrite system (3-10) in the form

+ + = 0 (3-13)

then

t+ S-Is + S-Isv - 0 
(3-14)

If the last term is to be symmetric, there must be an S such that
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S-I K S T-Ts-IT (3-15)

i.e., K = (SST )K T(ssT)
-

or equivalently, there must be a nonsingular symmetric transformation T such
that

KT = TKT (3-16)

In other words, such a transformation must be solved from the following mat-
rix equation:

-2 -HP F T1 ET T 1[ T KT'1 11 121 T 11 12 21 (3-17)

BK 2 2 TT T T _P H Q
12J T22 [T12 

T 22 -

where

-2 2
_ K + HPc c c

To complete Step 1, suppose that such a symmetric nonsingular transformation
T has been obtained. Then there is a nonsingular square root of T, denoted
S, such that

TSS = T .(3-18)

This can be found via Cholesky decomposition.

Define

K = S KS (3-19)

-I= SFs (3-20)
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Also define

= A _T) (3-21)

D= -(A + A) (3-22)

Then there exists an orthogonal transformation 4 such that

-= 2
(V = 2 (3-23)

Defining

T=
G = P GC (3-24)

T=
= T¢ (3-25)

brings the system into the form (3-11).

Comment 1: If steps 1 and 2 can be carried out, it is then possible
to interpret the closed-loop system in terms of modes, i.e., as if it repre-
sented a new structure. It was not previously apparent that "closed-loop
modes" could be defined in the sense that open-loop ones were.

Comment 2: If any of the steps can be carried through analytically,
then explicit stability conditions could be given. This has not yet been
accomplished.

Comment 3: This procedure might represent a more simple way to
determine closed-loop stability numerically using existing computer programs
for high-order systems.

Comment 4: Since the design value of the foregoing results often de-
pend crucially on the ability to obtain analytical expressions involving the
gains, several examples were worked in order to obtain a better qualitative
feel for how the gains enter the exact analytical expressions for stability.
In symmetrization of a two-mode system with control of one critical mode, we
carried out step 1 of the symmetrization procedures, Eq. (3-17), assuming
n = n = 1. The expressions obtained were very complex. It should be ap-c r

parent, however, that the problem of finding a symmetrizing transformation
can be expected to yield interesting stability results.

3.3 Closed-Loop Stability Conditions for a Two-Mode Example

The stability problem of system (3-10) can be viewed directly in the

frequency domain. In this case, we seek the roots of the polynomial
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+ (G + D - L + HV )s + (. - K + HP ) -H(Vh + P )cc cc C C C C C

M(s) = det

L-Ls + K) S + (6 + D)s +

Note that the lower right block is just the polynomial of the open-loop
system, which is stable by assumption. Thus a stability analysis might be
based on the perturbation-theory expression

M(s) = det I s 2 + (Gcc + Dcc - L + HVc)s

+ (,.2 _ 6 K + HP

c c c
2

H(Vs + P) [2 + (G + D)s +2 z(ls + K)

* det [s2  + (C + D)s + ',']

An effort has been made to work out M(s) for a two-mode example, and to apply
Routh's criterion so that exact stability conditions might be found for the
simplest case of interest. The results follow

s + (dcc - c + hv c)s + (, _ 6 k + hp ) -h(V s + ) -h(v rs + p

222M(s) -det -6 ( s +k) s2 + d b + .2 + d )IC cc cr r

L -8 r (is + k) (-gcr + dor ) s + d rrs + r

where lower-case letters have been used to denote scalar quantities. Note
that gcc = grr = 0 by the requirement that gyroscopic coupling be antisym-
metric. Also d = d and g = -g have been used. Subscript c denotesrc cr grc -gcr v be sd

"critical" and subscript r denotes "residual" as above. Lengthy algebra
yields

6
M(s) = L Misi

i=O
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where
M6  = I ,

m6

M5  = -i c + v k + 2d + d5 C CC rr

M4  = h,(b r v r - t c v c ) + k(pc + vc(dcc + dr)) - a c(dcc + d r)

2 d2 d2 22 2
-ko + g -d + 2d d +d + 2 w +W

c cr cr cc rr cc c r

M = hk(-, v - v ) + hi(r p + d B v - 8 p - d a v )3r r c c rr cc rr cc rr c c

2 2
+h(d cc pC + c v c + d rr pc + d d v + w

+k(-d 8 - d ) + (-W2 - d d - a2S )
cc C rr c C c rr cc c r c

+2d 2 + 2d ,2 + d d2 + 2d w2

cc c rr c rr cc cc r

M'= hk2 ckrp + h2kbrprp + hk(.-2rp + d B - p - d Bv
crr rrc crr cc rr cc rr c c

cc r r c r r rrcc - r c c

+h2p (g 2 + d d ) + d 2 v + d w2 v
c cr cr c c r rr cc rr c c cc r c

+k[- (gr - d 2  (2 + 2 + d d )]
c Cr cr c c r rr cc

+[-d ' 2 - d 2 s
rr c c cc r c

2 2 - d 2  + 2 2 2 + d d 2+ d d 2+. (g ) +  (. +,+dd) dd
C cr cr c c r rr cc cc rr c

2 2 d 2 2
+, +d

C r CC r

2 2
m i h k ~ d c c r r p r + c r v r d r r c cr c v c

2M= h, ,, p - d

c r r r c c
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2 2 2 2+h(drrwcPc + cc rc + rV)

+k(-d w2a - d w2 )- (w2 )
rr c c cc r c r cC

4 2 2

+d o4 + 2d w2 W

rr c cc r c

2 2 22 2 2 24
M = hk(w crpr - Wr cpc ) +htp - kwW + w W0crc c r c rcec r c

Forming the Routh array for a general 6th-order polynominal,

M M M2  M0
M 5  M 3  M 0

M N2  M0  0

N I N2 M 00

01 02 0 0

P I M 0 0

Q1  0 0 0

M0  0 0 0

where

N1  = (M5M4 - M6 M 3)/M5

N = (M5M - M6M I )/M 5

M (MM 5 -4-
01(M5M 4 - M6 M3 ) -M 5 (M5 M2 -M 6 M1 )

0 ( (M5M M6 M3 )

2

MI(M5M 4  6 - M5M 0

02 = 1 54 6 M3  5
(M5M 4  M6 M3 )

M52 1- MM (M (M5 M4 - M6 M3 ) - MoM5 )(M 5 M4 - M6
M5  M5[M(M5M4 - M6M)- N5(MM 2 - MM)

Q = (P 102 - M00 1 )/P1
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The most simple special case assumes

1. No gyroscopic effects g = 0

2. No off-diagonal damping, d = d = 0cr rc

3. Velocity sensing only pc = Pr = 0

4. Feedback only on velocity estimate, k = 0

In this case

M6  = I

M - . 2d + d + v h
5 cc rr C_

M 4  W6( v - v ) - 9 (d + d rr) + hv (d + d rr)4 h(r r c c c cc rr c cc r

+d (d +d + d d + 2w2 + )2
cc cc rr cc rr c r

N hk(d f3 v - d v + hvc  2 W2+ d d
3 cc r r rr c c c c r rrdcc

(w 2 2(r dc) 2 2

(c 2 + wr + d ) + 2(d + d )w +d w + 2dw-c c r rr cc "" c rr c cc r

2 2 2 2
M = h(w v - w v) + h(d w v + d wV)

c r r rr c c cc r c

-Z(drr2 c+ dcc2~c )

2 2 2 2 2 2 2 2+w2(w 2
j + w2 + d d)+ d d w2 + w w2 + d~w

c c r rr cc cc rr c c r cc r

M = hw 2L2v -f 2 w2 + d w4 + 2d w 2i2
1 c r c r c c rr c cc r c

N = 24

r c

It is still impractical to work out the entire Routh array analytically, but
we note that

M = 1 , 0 (first column must be '0 for stability)

M0  0 (last element of first column is positive)

M 5  0 implies v ch -
> 

- (2dcc + drr
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N M = M5M4 - M6M 3

- h2V(BrVr -Bcc) + hv(dc +d dr)

c r r c c c cc rr

-h2Bc(Brv - B v ) + h2.(-4B v d - 2B v a + B v d
c r r c c c c cc c c rr r r cc

+ Bvd )
r r rr

+hv [4d d + 3d
2 + d2 + W 2

c cc rr cc rr c

2 2 2 _2 _2
+Z2 c (dcc + d rr) + 2.B [- 4 dcc d - 2d _ d rr 2 ]

2d2 23 2 w2 2

+[4d d + 2d d +2d + 2d w2+ 2d w + ]
cc rr cc rr cc cc c cc r r rr

This shows that the third entry in the first column of the Routh array will
be positive under the more restrictive assumptions that

h>0

2.<0

Bcv c - B rv > 0 (more "control authority" on critical thanresidual modes)

At this point, our algebraic capacity was exhausted, although it is clear that
additional conditions can be derived.

Conclusion: Since in practice d , d are very small, we have in ef-
cc rr

fect shown that all but three conditions of Routh's test can be satisfied
under conditions of a typical example, by choosing k < 0, h > 0. It is un-
likely that the remaining conditions will allow any less-restrictive condi-
tion than this.
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SECTION 4

AGGREGATE MODEL DEVELOPMENT

4.0 Abstract

A common practice in obtaining a reduced-order model of a large space
structure for designing its vibration controllers is to truncate the
vibration modes directly, according to, say, the line-of-sight motions.
Such design models do not account for the influences ot actuators on the
truncated modes nor the influences of the truncated modes on the sensors.
The attendant control spillover and observation spillover can cause the
vibration controllers to destabilize the structures, even when these
controllers have been carefully and satisfactorily designed to ensure the
closed-loop stability with respect to the reduced-order design models.
The development of aggregate design models was thus intended to provide
better reduced-order models of the structures for use in the design of
vibration controllers. Vibration modes can be aggregated with respect to
actuator and sensor influences by a nonsingular transformation before
making any truncation; the truncated portion can then be independent of the
actuators and sensors. Such an aggregation transformation in the general
form was carefully studied (see Subsection 4.1). A useful set of necessary
and sufficient conditions and two separate sets of sufficient conditions
for the aggregation transformation to be nonsingular were established;
such conditions are useful as a guide in choosing specific values of a
diagonal block of free parameters in the aggregation transformation.

The aggregation transformation is not unique. Several interesting
ideas of utilizing the uniqueness (i.e., of selecting the specific values
of various free parameters in the transformation) for imposing additional
properties on the aggregate design models were examined (see Subsection 4.3);
some of their potential difficulties in obtaining closed-form analytical
results were analyzed.

Vibration modes can be aggregated also with respect to their
influences on performance and the influences of disturbances in addition to
actuator and sensor influences. For example, the control systems for a
large space structure might be designed to minimize the transmission from
the disturbance sources to the critical performance variables besides
providing the structures with closed-loop stability. By including the
influences of the disturbances as a "part" of actuator influences and,
similarly, the influences on the performance as a "part" of sensor influences,
this "generalized" aggregation problem was able to be recast into the same
initial form (see Subsection 4.3), so that the same arguments and the same
techniques could be applied and extended directly.

48



4.1 Aggregation of Vibration Modes with Respect to Actuator and

Sensor Influences

A standard approach to model reduction is to truncate the open-loop
modal representation directly, by neglecting (generally high-frequency) non-
critical natural modes. This generally results in control energy being coupled
into the neglected portion in a way which can be destabilizing. Here we explore
a different choice of basis. Rather than using the open-loop modes directly,
we aggregate them first based on the influence of the actuators and sensors.
The advantage is that the coupling with the neglected portion becomes indepen-
dent of feedback control gains, and is thus much more readily predicted.
Furthermore, this choice of basis is also not affected by feedback.

Consider the following usual finite-element modal representation of LSS.

+ Q 2 = TBFu

y CDPr + CV r (4-1)

where q denotes an L-vector of normal coordinates; Q E {w1 , ..., wL I and P E

[1 .... L ]I are L x L matrices; w, and $i denote the natural frequency and

the natural shape of mode i, respectively. L is usually a very large integer.

I (ri l ..., IL) denotes the corresponding normal coordinates. u = (uI,

um) denotes the control inputs to m force actuators, and B F the L x m influence

matrix. y = (yl, ... , yZ) denotes the observation outputs from ZD displacement
sensors and ZV velocity sensors (0 < ZD < k, 0 < XV < k); CD and CV denote the

corresponding Z x L influence matrices. Superscript T denotes transpose. Nor-
mally, m < L and Z < 2L.

A corresponding state-space form is

x = Ax+Bu (4-2)

y = Cx

where I0 0
_Q 2 0TBF
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We assume that both B and C are of full rank. The rows of matrix B and the
columns of matrix C can be rearianged such that

B C d 2 (4-3)

with B being an n x m matrix of rank m and C l an 9 x n matrix of rank 9 for

the smallest integer n. We assume the corresponding rearrangements have been

made on the rows and columns of matrix A.

Now, to aggregate the state variables of (4-2), namely, the vibration
modes of (4-1), with respect to actuator and sensor influences, we aggregate

the rows of matrix B and the columns of C by a similarity transformation T

such that

TB = _ CT = [C 0] (4-4)

where B is also an n > m matrix of rank m and C also an Z x n matrix of rank

k. By defining

x Tx, A = TAT- , B = TB, C =  CT-  (4-5)

we now have the following special but equivalent representation of the LSS

k - Ax+Bu

y - Cx (4-6)

Partitioning these matrices conformably with (4-4) yields

A A A 1F 1
A = I- - 2 B = 1 c = [ I  o

LA21: A22],

where All, in particular, is an n x n matrix. The corresponding state equation

can thus be rewritten as
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A 11 = I + A 12x 2 + BIu

2= A2 1xI + A 22x2  (4-7)

y = 1lX1I

Using any such aggregation transformation (and the orthogonal trans-
formation representing the rearrangement of matrices A, B, and t before ag-
gregation), we have aggregated the vibration modes with respect to the influ-
ence of actuators and sensors. Observe, specifically, that the control of (4-7)
does not directly affect x2 nor is the observation directly affected by it.

Neglecting x2, we get the following aggregate design model of order only n:

: = Al
x + Bu

(4-8)
y = 1lX

Roughly speaking, such a reduced-order model represents an equivalent
dynamics of those linear combinations of natural modes which can be directly

measured and controlled. It is not an exact aggregation (1] - [3] of system
(4-2) in the sense of Aoki. By proper selection of the aggregation transforma-

tion T, this reduced-model may be made to approximate open-loop performance
of system (4-I), much closer than any one obtained by direct truncation of the
vibration modes.

Comment 1: In general, it is sufficient to have k + m rows in the block B1 and

k + m columns in the block C1 ; hence n < Z + m. Depending on the specific

form of matrices B and C at hand have, or due to the existence of both velocity

and displacement measurements, the blocks 1 and C1 need only max{,m} rows

and columns respectively; hence n < max{f,m}. Note that the possibility of
having an aggregate design model (4-8) of order less than 2 + m is an improve-
ment over the preliminary results [7].

Comment 2: The rearrangement of matrices B and C to have them bear the form

described by (4-3) can be carried out using common computational procedures such

as Gaussian elimination or Gram-Schmidt orthogonalization on rows of B and
columns of C. Any prior effort in the placement of actuators (and sensors),
or in the synthesis of actuator (and sensor) influences for preventing control

spillover to (and observation spillover from) secondary modes, as discussed in

[4-6], will facilitate the rearrangement of these matrices, since there will

be fewer nonzero rows in B (and fewer nonzero columns in t) to work with.
Since the number of actuator-influenced (and sensor-influenced) modes, partic-

ularly those which are secondary modes, will be decreased, such spillover

prevention efforts will also facilitate the aggregation and reduce the coupling

A12 and A21.
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Comment 3: The aggregation of, say, matrix B as described in (4-4) is equiv-
alent to making proper linear combinations of the rows of t to produce the
specified form. In conjunction with representation (4-7), this can be inter-
preted as synthesizing the actuator influences so that control inputs will not
spill over part x2 of the aggregated state x. Compare this interpretation with

the idea [4-6] of preventing control spillover to secondary modes by synthesis
of actuator influences. To prevent control spillover by synthesis is to make
proper linear combinations of columns of matrix B to achieve a partitioning
similar to what is described by (4-4), namely, to determine a transformation r
such that

It follows from this comparison that the technique developed for computing
synthesis transformation F can be modified to help compute the aggregation
transformation T. This comment is equally applicable to the aggregation of

matrix C with respect to an aggregation transformation S H , observation
spillover, and synthesis of sensor influences.

Let the transformation be partitioned with respect to (4-3) and (4-4)
as follows ['1

T = E=- T12]
T 21 T T22

The dimension of the blocks are as follows:

Till n x n; T 12, n x (2L - n); T2 1, (2L - n) x n; T2 2, (2L - n) x (2L - n).

Then Eq. (4-4) can be written as

T11 1+ T12 B2 = B1 (4-9)

T21BI + T22B 2 = 0 (4-10)

CT = C (4-11)

CT = C2 (4-12)

R

Since C1 is of the full row rank, its right inverse C1 exists. Therefore, from

(4-12), we have
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,R-

T12 m cIc 2  (4-13)

where

R c T -cIvC( C TC)-I1 + N (4-14a)

1 1 1 12

and N12 is an arbitrary matrix such that

C1 N2 = 0 (4-14b)

Similarly, B1 has its left inverse and, from (4-10), we have

T 2 -T 2B (4-15)T21 =-22B2B1

where

B L + N (4-16a)
1  1 1 21

and N21 is an arbitrary matrix such that

NB21B = 0 (4-16b)

It follows from (4-14) and (4-16) that

-T22B2BI  T 2  [~
[-T ] I T 0 T 1  1

Therefore, the aggregation transformation T is nonsingular if and only if both

T and (T 1 + CRC2 B2Bi) are nonsingular.

Comment 4: The specific value of matrices C I and B1 in (4-4), in general,

should be consequences of the aggregation transformation T. Suppose on the
contrary that C1 has been prescribed before the aggregation. Then, from

(4-11)

T C C1
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Consequently, the matrix sum

11 2 L + 22BB

cannot be nonsingular unless for such a very special case that n = £ > m and

C1 + C2 B B is nonsingular. Therefore, it is better not to prescribe the

value of C1 before aggregation.

Matrix B1 should not be prescribed, either. Premultiplying (4-9) by C1

and using (4-11) - (4-12) and (4-3), we have

CGB I = CB + CB CB (4-17)
1 1 1 2 2

This relationship in general will not be satisfied if B is assigned a specific
value before aggregation.

In the sequel, we assume that both T and T22 are nonsingular, and that

both C1 and B1 are computed after aggregation. Now, from (4-13) and (4-15), we
have

T- 0 I C R-

______[11 T2]1[-BB 1 I
Theorem 1: The aggregation matrix T is nonsingular if and only if the

n n matrix (I + T- CC 2 B 2 B ) or the (2L - n) x (2L - n) matrix

I + B2 BITllC1C2 ) is nonsingular, where

~ -1
C 1 = C1T (4-18)

Theorem 2: The following are two separate sets of sufficient conditions
for the matrix T to be nonsingular.

(a) B2  = 0or C2  = 0

(b) T1 IT 1 1  = I, £ = m, and C = EB for some nonsingular matrix E
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Comment 5: Condition (a) appears to be trivial, since either the actuator in-
fluences or the sensor influences have been aggregated properly. This condi-
tion, however, clearly indicates the advantage of using Gram-Schmidt or
Gaussian elimination procedure for rearranging the rows of B and the columns
of C, and the advantage of prior effort made in preventing control and obser-
vation spillover by placement or synthesis; see Comment 2.

Comment 6: First part of condition (b) means that T is a special kind of non-

singular matrix that is orthogonal; the identity matrix obviously is such an
orthogonal matrix. The second and third parts mean that there are as many
sensors as there are actuators and that the sensor influences as a whole are
similar to the actuator influences as a whole. For LSS having only force
actuators, this implies that no displacement sensors are considered for aggre-
gation; namely, CD = 0 in (4-1). The special case in which E = kI represents

the commonly considered case where each force actuator is collocated with a
velocity sensor, and vice versa. Notice that vibration modes with such a
special case can always be aggregated to achieve the desired representation (4-7).

Comment 7: The expressions (4-13) - (4-16) for T12 and T21 are slightly dif-

ferent from those given in [7]. These slight improvements, however, have made

it possible to obtain useful new results, such as Theorems I and 2.

4.2 Ideas for Specifying the Nonunique Aggregation Transformation

The similarity transformation T for accomplishing the aggregation as des-
cribed by (4-4) is not unique; subject only to some rather minor constraints,
submatrices T i, T 22, N 12, and N21 are virtually free parameters. Additional

properties may thus be imposed on the aggregate design model (4-8) by specifying
these parameters. The following are some interesting ideas we made a quick
look at.

4.2.1 Minimization of Coupling Coefficients A and A

Unlike the reduced-order design model usually obtained from direct
truncation of vibration modes, the aggregate design model (4-8) has the desirable
property that the coupling between the retained part x1 and the truncated part

x2 remains unchanged even in the closed loop with feedback control systems.

This constancy does not depend on how the control systems are designed, be they
designed as LQ regulators and observers, or as dynamic output feedback com-
pensators [7]. Therefore, it would be very desirable if the open-loop coupling
coefficients A1 2 and A21 could be minimized by a suitable choice of the non-

unique aggregation transformation.

Partition the aggregated matrix A defined in (4-5) and the original
matrix A conformably with the similarity transformation T. Then we have
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iF A
A 1 A 2][11 12 T 1 T12] 11 A12

A21 A22JLT21 T 221 T21 T22 [21 22_

Solving for A1 2 and A2 1 yields

A12 [TIA1 2 + T A (T A + T A )TT12(T2 T - -1-12 22 - Ii 12 21 T121 22 2 1 T 11 T1 2 ) (4-19)

2 [TA TA (TA TA'T-I T -1 -1

21 211 + 22A21 - (2112 + 22 22' 22 211(TI - TI2T22T 2 1) (4-20)

In terms of A12 and A 21 we have

A (TIA + T-A - AI 1)TII (4-21)
1 (T11A11  T12A2 1  1 11

A T -1 1-

22 = (T2 1A2 2 + T2 2A2 2 - A2 1T1 2)T22  (4-22)

Substituting (4-13) and (4-15) in (4-19) and (4-20),

A T A +T-1CR ~  -A1T -1 CR ~CA12 =Tll I2 + TllClC2 1lC¢
12 1112 + 1 12112(4-23)

TI RE A T-Il R B iL, T-ICR -)-I_1(-3

21 2 21 1 12)(1 B2B1T1 12)T22

A T -BRB A + A -B BIA2B2BI
221111 21 2 1 122 1

(4-24)

+ AB L +T_-1CR CBBL)-1I-1
22 21)( 11 12 2 2 11

With the expressions (4-14a) and (4-18), the terms within the parentheses of
(4-23) and (4-24) are virtually independent of T and T 22. Thus, to minimize

A12 is to minimize T11 and maximize T2 2, whereas it is the opposite for mini-

mizing A21. Therefore, the coupling coefficients A12 and A21 cannot be mini-

mized simultaneously by any choice of T and T22.
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The only possibility lies in the selection of the null-space matrices
R

N and N involved respectively in the right inverse C and the left inverse
12 21 1

BL . The terms in the first parenthesis of (4-23) can be minimized by a separate
I

choice of N 12, while those of (4-24) can be minimized simultaneously by a separ-

ate choice of N21* The matrix products in the second parenthesis of (4-23) and

(4-24) can be maximized simultaneously by a joint choice of N12 and N21.

The constancy of the terms in the parentheses of both (4-23) and (4-24)
can be seen more easily if we consider the class of orthogonal matrices for
T i, namely

T
TIT = I
11 1

For this class

I1R- -R-
Tl1CC = CIC 2  (4-25)

which is independent of T 1. All the terms within these parentheses are

completely independent of T 11

Nevertheless, the numbers of nonzero columns in A and nonzero rows in
12

A21 can be reduced. Yeung Yam of MIT, while expanding the preliminary results

in [7], has recently derived a specific choice of the free parameters in T
such that, for the case n = Z + m, only n columns of A12 and n rows of A21
are nonzero.

4.2.2 Minimization of Differences in Closed-Loop Transfer Functions

Feedback control systems are to be designed based only on the reduced-
order aggregate design model (4-8). The resultant closed-loop transfer functions
for the design model alone generally will be different from the resultant ones
for the overall system representing the LSS. It would be very desirable if
the differences could be minimized by suitably specifying the free parameters
of the aggregation transformation.

As in [7], consider fixed-order dynamic compensators of the form

z = Fz + Gy

u = Hz + Ky + u (4-26)

where the compensator state, z has a fixed dimension which is usually much

less than 2L; 5 denotes the command inputs; F, G, H, and K are design
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parameters to be determined based on the reduced-order model (4-8). Substitu-

ting (4-26) in (4-8) yields the following closed-loop system of the design model.

= i [ + U

= 10 C (4-27)
L x

1

where

F GC 1
A =- I (4-28)

1 [B H A + BKC

The transfer function matrix of the closed loop system (4-27) between u and y

is found to be

Q(s) - [0 C1(sI -A

= 1 [sI - A1  B 1 KC1 - B H(sI - F)1 1 -1 B,1  (4-29)

Now substituting (4-26) in the overall system (4-7) yields the following

closed-loop system.

= x L] + B1]u 
(4-30)

y =[0 C 1 0]1
~x

where

SF GC1  0
11 , 1 L BlH Al! + B KC I

21 ' 22_

A2 1  A2 2  (4-31)
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with the same A as defincd by (4-28). T'hc, rans!t r t uic ti, n matrix of the

closed loop system (4-30) between u and v is found tu be

Q(s) = C sI - A11 - B1 KC1 - B1 1(sl - F) l;c - A 2 (0, - A ,) A1 h

(4-32)

Define the difference by

E(s) = Q(s) - Q(s) (4-33)

Then, one could attempt to choose the parameters TIII T22 , N 12 and N21 such

that

J ftrace LE(s)ET(9)]d,, (4-34)

is minimal, where s = o + jj and s denotes the complex conjugate of s. To ob-

tain a solution to this minimization problem is impra:tical, if not impossible,

judging from the algebraic complexity involved when the expressions (4-19) -

(4-22) for A.. and (4-13) - (4-16) for T1 2 and T2 1 are substituted in (4-29)

and (4-32). '
3

Intuitively, the main difference between Q(s) and Q(s) is the term

A2(S - AI2 1  The minimization of this term will also minimize the over-

all difference as defined by (4-33) or (4-34). See the preceding subsection

(Subsection 4.2.1) for discussion on minimizing the coupling coefficients A2

and A21
21'
Another intuitive alternative is to maximize the terms within the brack-

et of (4-29) so that the corresponding terms in (4-32) dominate the term

A1 2 (sI - A2 2 )_ A2 1.

These two intuitive approaches may be much easier to take than direct

minimization of the overall difference defined by (4-34) and any other way using

(4-33). The necessary algebra still can be very complicated.

4.2.3 Assurance of Closed-Loop Stability of LSS

Again, feedback controllers are to be designed using only the aggregate

design model (4-8), and at least to assure closed loop stability with respect

to the design model. It would be desirable if closed loop stability could

still be assured when such controllers were implemented on LSS, which contains

not only the design model but also the truncated part. Such an assurance is

generally impossible for the case Df direct truncation of vibration modes. Re-

call that the coupling A 1 2 and A21 of the aggregate design model are independent

of any controllers designed by any method. Thus, if closed-loop stability of the

LSS having a controller designed for the aggregate design model using somt,
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model using some method can be guaranteed, then closed-loop stability of the
LSS having any such controllers but designed by other me~hods can also be
guaranteed.

Consider again the feedback controllers of the form (4-26). Assume the
design parameters F, G, H, and K are computed based on (4-8) so that the closed-
loop system (4-27) is stable. The question is whether it is possible to find
(and specify) among the nonunique aggregation transformation one such that the
closed-loop system (4-30) is also stable. This requires the use of the stability
theory for interconnected large scale subsystems; but the development of such
stability theory has just begun [81 and no results are directly applicable to
(or general enough for) our problem at hand yet. Moreover, with the expressions
for A.., and T. . substituted in (4-31), the resultant matrix A is a very com-

plicated nonlinear matrix function of parameters TIII T22' N12' and N 21 De-

riving an analytical stability condition for system (4-30) is very difficult,

if not impossible, at present. An attempt was made, however, in applying

Willems' generalization [9] of Lyapunov theory to system (4-30).

4.3 Aggregation of Vibration Modes also with Respect to Tracking and
Disturbance Rejection

In the previous derivations, it was implicitly assumed that the pur-
pose of the fixed-order compensator (4-26) was merely to enhance the stability
of the closed-loop system. The aggregation was thus based only on the actu-
ator and sensor influences. Now assume that there are a finite number of
disturbance sources on the structure and a finite number of critical response
variables (such as LOS motion in x and y directions). Then the compensator
might be designed for minimizing the transmission from Lhe disturbance sources
to the critical response variables for all critical frequencies. This implies
that the compensator places particular emphasis on damping out those vibration
modes which can influence the critical response variables and can be excited
by the disturbance sources. For such a generalized purpose, aggregation of
the vibration modes should also include the influences of disturbance sources
and critical response variables.

We extend the preceding studies in the following way. Suppose the
original representation is now expanded as follows:

x A+Bu+5v

y Cx+Ew

r +

(4-35)
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where

v is a vector of disturbance inputs

w is a vector of observation noises

r is a vector of response (not necessarily measurable)

u, R, y are as before.

Now define

B =[BDO0], D v[ i ~

, y = , A, x x -

= x+Du(4-36)

Now by arguing as before, there is a transformation which brings the repre-

sentation (4-35) into the form (A,B,C,D) =(TAT-1, TB, -cT- , D), where

A = [:: :::]= [B =O]4(437)

[2] A2

here Al has the dimension between max {dim u, dim y} and (dim ul + dim y).

The representation (4-36) is now transformed into a similar form to (4-7).

By making the sane truncation, we obtain an aggregate design model which

is also in a similar form to (4-8).

Now suppose we have a compensator

S= Fz + Gy

u Hz + Ky
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Then the closed-loop dynamics is given by

F 
GC *

= +BC + [ 0 GE ][

A KC D BKE

r = [NH M + NKC + [0 NKE} [

where N = N, E = E (since D = D), and B , C , D , M are identified by parti-

tioning B and C, i.e.,

B [Bt*D*0] [ D, :
0~ 0 0 0

C [C I O] [;
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SECTION 5

PARETO-OPTIMAL CONTROL

5.0 Abstract

Canavin's "modal-dashpot" concept and Aubrun's "low-authority
control" theory were two off-the-shelf examples used to illustrate the
multiple-objective optimization problems underlying the design of vibration
controllers for large space structures (see Subsection 5.1). Canavin used
pseudo-inverses to compute the output feedback gains required for augmenting
a certain level of damping to primary modes (or, specifically, critical
modes); the computed gains were of dismally high values. A careful exam-
ination showed that such a high-gain problem need not exist because there
were free parameters that could be adjusted to minimize the magnitude of the
required gains. It also showed that the desire for large possible achievable
damping and for small possible required gains could easily be formulated as
a two-objective optimization problem and solved directly and efficiently by
multiple-objective methods without computing the pseudo inverses and the
appropriate values for the free parameters. In Aubrun's theory, the feed-
back gains were to minimize a cost functional that was the sum of two
disparate design objectives: the magnitude of the errors between predicted
and desired closed-loop damping, and the magnitude of feedback gains. The
tradeoff between the closed-loop damping errors and the feedback gains, and
the variation of the former versus the latter, could be systematically and
efficiently made by formulating the underlying two-objective optimization
problem and then applying a multiple-objective optimization method.

The applicability and application of two multiple-objective opti-
mization methods were demonstrated by Pareto-optimal designs of modal
dashpots for the 12-mode Draper model (see Subsection 5.2). Not only a
sequence of the two-objective Pareto optimal designs but also the maximum
damping achievable for each level of feedback gains were computed system-
atically. Insights into the movement of the closed-loop poles as the
feedback gains increase their magnitude were easy to obtain from the resulting
root loci. Systematic evaluation for robustness of the resulting sequence
of designs to parameter variations and to spillover became easy. The
variations of the sensitivity (i.e., of the robustness) were also obtained.
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5.1 Applicability of Multiple-Objective Optimization
Methods to the Design of Vibration Controllers

The design of a control system normally has more than one performance
objective to achieve: e.g., large modal damping, low control response, little
small feedback gains, small errors or overshoots, fast response, little
spillover. As a standard practice, a designer usually combines the multiple
objectives into one single performance index using some rather arbitrary
weights. The designer, usually not satisfied with the resultant control
systems, then repeatedly, aimlessly, and sometimes endlessly, changes the
weighting coefficients to obtain new designs. Such frustration is not
uncommon in the design of "modern control systems" using the linear-
quadratic regulator theory; the weighting matrices Q and R frequently are
changed over and over again. Experience with artificial single-objective
optimization used on multiple-objective design problems has often left the
designer dissatisfied with the lack of information (or systematic information)
on the available tradeoffs between his multiple objectives and his "multiple-
objective optimal" designs. Realistically, incompatible objectives cannot
be unified; important multiple objectives should be addressed directly and
their trade-off be made efficiently and systematically.

Pareto optimality is a practical notion of "multiple-objective"
optimality that is useful to control systems designers faced with multiple
disparate performance objectives. Stated simply, a design is Pareto optimal
if none of the multiple objectives can be further improved without degrading
any other. Multiple-objective optimization by the method of proper equality
constraints (PEC) or the method of proper inequality constraints (PIC) help
the designers obtain both Pareto optimal designs of control systems and
efficient tradeoffs of the multiple objectives directly and systematically.

Consider the following two different approaches to the design of
vibration controllers for large space structures: Canavin's "modal-
dashpot" concept [1-4] and Aubrun's "low authority control" theory [5,6].
Let us point out their underlying multiple-objective design problems and
briefly demonstrate the applicability of the above-mentioned multiple-
objective methods [7-10].

Assume that large space structures are represented in modal coordinates
as follows:

+ F2n = OTBFu (5-1)

y = C v)n (5-2)
V

65
t

-. 4 i - ...



where 2 = diag jW1 .... WL , and $ ffi * ... L ] are LxL matrices: Wi and

i denote respectively the natural frequency and shape of the ith normal

-mode of vibration. n =ff (nlt...,'L) denotes the corresponding normal

coordinates. u = (ul,...,u m ) denotes the control inputs to m force actu-

ators, and BF denotes the Lxm influence matrix. y = (yl,...,y£) denotes

the observation outputs from Z velocity sensors: CV denotes the correspond-

ing ZxL influence matrix. Superscript T denotes transpose.

In general, a very large number of vibration modes are included in
this model. Let {wPi, cP}, i = l,...,p, denote a selected subset for

suppression; we call them primary modes for a self-explanatory reason.
Completely neglecting all nonprimary modes yields the following truncated
form

+ = pBFu (5-3)

= C v P 
(5-4)

where 1 and (D are similarly defined in terms of the p primary modes,
and Np = (rp1,,,., p ) denotes the corresponding normal coordinates.

Vibration control systems are then designed for this model as if it had
exactly modeled the LSS in question.

Both Canavin's and Aubrun's approaches are for designing constant-gain
velocity-output feedback control in the form

u = -GvY (5-5)

Substituting (5-5) in (5-3) and (5-4) yields the following closed-loop
system dynamics

T 2
fp + DpBFGVPCv p + 2Dp = 0 (5-6)

Consider Canavin's modal-dashpot concept first. In order that each
primary mode may be damped independently and arbitrarily, the feedback gain
matrix Gv is computed using pseudo-inverses as follows:

Gv = T BFTIT B ID B T [(CV'P)T CvOP] - (CVOP)T
''L P F P FJ (Z2)

(5-7)
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where Z denotes a diagonal matrix of desired damping ratios Ci for the p

primary modes. It is assumed that Z 2 p and m p. Each actuator was
assumed to be collocated with a velocity sensor in his numerical

example [1,21. For 10% damping for each primary mode, the computation using
(5-7) resulted in a gain matrix of shockingly large values. He felt that
"modal dashpots may be of limited utility due to the high gains produced
by this approach" [1,21.

Such a high-gain problem actually need not exist. For exactly the
same purpose of independently and arbitrarily damping the primary modes,

T
the gain matrix G can be computed using a right inverse of Dp B and a left

V P F
inverse of CVDP , instead, as follows:

Gv V (DTB ) R (2zP) (c 4)P)L (5-8)

where

(D TB R ( TB) [,D B ( B )]-1+N 59
PF \PF! P F P F F (9

(CV 4p)L E [(CVOP)T CV(DP]l- ( c V ') + N V (5-10)

with N F and NV being arbitrary null-space matrices such that

4)BNF = 0 (5-11)

NvCvOP = 0 (5-12)

(See Section 6.2, particularly Comments 7 and 8, concerning a generalization
and an extension of the modal dashpot concept.) The similarity and the
difference between (5-7) and (5-8) are obvious. Whenever the rank of

D F B is less than the number m of actuators, matrix N need not be zero.
PzF F
Similarly, whenever the rank of C Vcp is less than the number Z of sensors,

matrix NV need not be zero, either. Nonzero NF and NV serve as free para-

meters and can be used to reduce the magnitude of gain matrix Gv* The unde-

sirable consequence of neglecting these adjustable free parameters is thus clear.

Now that we have recognized the existence and advantage of free
parameters NF and NV, an obvious question is how to choose their values

to minimize the magnitude of the required feedback gains while using the
feedback gains to augment as much damping to the primary modes as possible.
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The underlying two performance objectives now become evident, and are
formulated as a bi-objective optimization problem as folljws. Note that
in the interest of improving model fidelity, we also retain in the control

design model some other important modes which we call secondary modes and
denote by subscript S. Active damping of secondary modes is not required,

but prevention of control spillover to and observation spillover from them

is desired. Both primary and secondary modes are altogether referred to
as modeled modes and denoted by subscript M. Therefore, the bi-objective

modal-dashpot design problem is to find the feedback gains gij and the

damping ratios Ci that
maximize

P

Jl= W ipi (5-13)

and minimize

m
J = 2 (5-14)

i=I j=1

subject to

F vTv M = 2ZM9M  (5-15)

i- Pmin for primary modes (5-16)

i - Smin for secondary modes (5-17)

where weighting factors w i are useful for expressing desired mode movement

(see Subsection 5.2). Observe that no computation of the pseudo-inverses,

the right or the left inverses, or the free parameters is required. They
are all embedded in the equality constraint (5-16) of closed-loop modal

decoupling. The method of proper equality constraints (PEC) is to set

the first objective to a parametric level, i.e.,

P
= Pi = t (5-18)

i=l1

whereas the method of proper inequality constraints (PIC) is to bound the
first objective by a parametric level, i.e.,

p
ct (5-19)

i Pi
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Whether the method of PEC or PIC is used, the bi-objective problem (5-13) -

(5-17) is all converted to a parametric single-objective quadratic
programming problem of the following standard form: minimize

J = xTQx (5-20)

subject to

Ax b

x 0

Many algorithms and computer programs have been developed for solving the
quadratic programming problem (5-20); see, for example, References [11-15].

For each selected value of the parameter U, the resulting quadratic
programming problem is solved for the single-objective optimal solutions.

Using the test for Pareto optimality as given in References [7-10), the

Pareto optimal values of feedback gain gij and damping ratios i are

obtained systematically in the increasing order of a. The resulting

minimized values of the objective J 2 (i.e., the magnitude of gain matrix GV),

plotted versus parameter a, will help the designer make optimal tradeoffs

efficiently and systematically between achievable damping and minimum
required gains. See Subsection 5.2 or Refs. [16-17) for more details.

It is worth mentioning that the free parameters NF and NV are

implicitly used to minimize the magnitude of required feedback gains and to

decouple secondary modes from primary modes in the closed loop. Such was

not pogsibie with Canavin's origin modal-dasnpot concept. On the other hand,
there is no question at all about the applicability of multiple-objective

optimization methods to design of modal dashpots.

Now, consider Aubrun's low-authority-control (LAC) theory. According

to Aubrun [5,6], for sufficiently "small" feedback gains gi, the closed-

loop damping of mode i is predicted using the following formula [5,61:

d. z i Z TBFG C (5-21)
I- L iF VV i

using the open-loop frequency wi and mode shape i" To compute the gains gij,

let (di)P denote the predicted closed-loop damping given by the above

formula, and let (d i)D denote the desired closed-loop damping imposed by

the LAC controller design. Then the gains gij are chosen so as to minimize

the quadratic cost functional

J(GV) = . wi [dxiD - (dli)P +. . gij (5-22)
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in which the modal weights w i help specify pole locations and the

term E g2. improve robustness of the controller [6]. It is not difficult
1,j Ji

to see from (5-22) that two disparate objectives, one concerning damping
and the other concerning gains, are "unified". The underlying bi-objective

optimization problem is to
minimize

Jl = [diD - (dXi)p]2 (5-23)

and minimize

2
i g (5-23)

Pareto optimal solutions of this problem by the method of PEC or PIC will
provide a curve of J2 versus J for systematically making efficient tradeoff

between achievable damping errors and the corresponding feedback gains
required. The first objective, Jl' is converted to a parametric equality

constraint if the method of PEC is used, while it is converted to a
parametric inequality constraint if the method of PIC is used instead. All
converts the bi-objective problem to a simplest form of nonlinear programming
problem, where the single objective function and the parametric constraint
are quadratic. Many nonlinear programming algorithms and computer programs
already developed [14,15] can be used in solving the resultant constrained
optimization problem. Applicability of the multiple-objective optimization
methods is, again, not a problem at all.

Comment 1: Both underlying bi-objective design problems (5-13) -

(5-17) and (5-23) - (5-24), have the minimization of feedback gains as an
objective; such is a very practical engineering objective in addition to
the design objective on damping.

Comment 2: The closed-loop damping expressed by formula (5-21) may
not be valid since the closed-loop modes may not remain decoupled with the
same open-loop frequencies, even with respect to the reduced design model.
Only when the gains gij are extremely small will the closed-loop modes be

virtually uncoupled. On the other hand, the desired independence can be
explicitly imposed, such as (5-15); the resultant Pareto optimal designs
then will certainly ensure that the open-loop modes remained decoupled at
least in the closed loop of the design model.

Comment 3: The minimization of feedback gains, such as expressed by
(5-14) or (5-24), does not actually provide robustness of the controllers
designed. It will reduce control and observation spillover, however,
because the residual modes will be less excited and less observed.

70



5.2 Application to Draper Tetrahedral Model of LSS

The 12-mode Draper tetrahedral model of LSS was used as an
example [16,17]. Pareto optimal designs of modal dashpots and the tradeoff
curve were sequentially generated by a bi-objective optimization program
developed. In search of more or less uniform movement of the primary modes
under efficient tradeoffs of damping and gain objectives, we found the
form of inverse-sum-of-squared-influence (ISSI) for the weighting factors w.
in (5-13) more satisfactory than othcrs.

Each of the resulting designs was then examined for its robustness
to model parameter variation and spillover (resulting from modal truncation).
For all designs with velocity sensors collocated with force actuators,
robustness of stability to parameter variation and to spillover was clearly
demonstrated. The damping performance is relatively insensitive to
parameter variation and to spillover; however, the sensitivity rapidly
increases as the desired level of critical-mode damping increases. In other
words, modal dashpots can theoretically be designed to provide any desired
level of damping to the critical vibration modes. In practice, however,
only low designed levels of modal damping can be closely achieved due to
this sensitivity to parameter variation and spillover.

For those designs where the sensors and actuators were not all
collocated, stability and damping performance are also relatively insen-
sitive to parameter variation. However, spillover causes all designs to
destabilize the originally stable structure; at least half of the resultant
closed-loop poles have positive real parts. Destabilization by modal
dashpots, which are also referred to as robust controllers, has not been
demonstrated before. Consequently, collocation of sensors with actuators
is essential to the robustness of modal dashpots when used as vibration
dampers for realistic large space structures.
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SECTION 6

GENERAL REQUIREMENTS FOR STABILIZATION

6.0 Abstract

Feedback from velocity sensor outputs can augment damping and
feedback from displacement sensor outputs can augment stiffness to large
space structures. The design of the feedback gains are normally based only

on modeled modes; the exisLence of unmodeled modes is completeiy ignored.
Due to the attendant control and observation spillover, even stability of
the closed-loop system having feedback controllers thus designed may not be
ensured, let alone the additional damping and stiffness desired. Useful
general conditions in various useful forms were recently established (see
Subsection 6.1) for guaranteeing closed-loop asymptotic stability. Such
conditions ate useful as a guide to the design of closed-loop stabilizing

feedback gains. Large space structures considered were not limited tE
those having only stable elastic modes; rigid-body modes and unstable modes
were not excluded. For those special structures having only stable elastic
modes and rigid-body modes, useful simple conditions were also established.
The conditions for robustness to parameter variation and to modal truncation
were also established.

Canavin's modal-dashpot concept was generalized and extended (see
Subsection 6.2). The similar concept of "modal springs" was therefore
proposed. The general formulas for computing the feedback gains of
generalized modal dashpots and modal springs were derived. These formulas
contain various adjustable free parameters. The closed-loop asymptotic
stability ensurance and the robustness to parameter variation and to modal
truncation of modal dashpots and modal springs were established, thus at
least providing a theoretic foundation for Canavin's original concept.
Although no analytic proofs for the closed-loop stability ensurance and
robustness of modal dashpots were given by Cnavin when he proposed the
intuitive concept, a numerical demonstration was made with a typical
example of large space structures.

Control spillover to and observation spillover from secondary modes
can be prevented before the beginning of the conrrler design process by
proper placement of actuators and sensorq or by proper synthesis of
actuator and sensor iniluences. A general-purpose computer program is being
developed for synthesizing actuator influences so that control spillover
to secondary modes can be prevented and the desired control influences on
primary modes can be obtained simultaneously. A recent theoretical analysis
has led to the conclusion that such a computer program can be used to
synthesize sensor influences by duality and even to determine the proper
location of actuators and sensors (see Subsection 6.3).
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6.1 General Conditions for Closed-Loop Stabiliz&a:i n by
Output Feedback Control

Consider the active control of a generic large space structure (LSS)
which may contain rigid-body modes, unstable and .ltab]_ (,]a-stic modes. As
usual, let the modal equations gcuurated by a finite-clement computer program
(such as NASTRAN) be

• CTf
r! + + f (6-1)

where r denotes the L (normal) miodal coordinates and the natural mode shape.,_
f denotes the m generalized forces; _ and _ are diagonal matrices denoting,
respectively, the modal damping and the modal stiffness coefficients, in gen-
eral, the diagonal elements of _ and 'I may be positive, zero, or even negative,
and can be extremely small if not zero. Note that if q denotes the generalized

physical coordinates, then

q - (6-2

Consider specifically the case of constant-gain output feedback control, nanl.,

V velocity measurements and D displacement measurements are fed back to m

force actuators with constant gains as follows

f = BFU (6-3)

u = -GvY V  GDY D b-4)

YV = Cvq (6-5a)

YD = CD q (6-5b)

In other words

f = -BFGVCvq - BFGDC0 q (6-6)

Substituting (6-6) in (6-I) yields

n + + +Dy) " + ) = 0 (6-7)
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where

D A BFGvC (6-8a)

K A BFGDCD (6-8b)

denote the additional damping and stiffness matrices respectively. The design
of gain matrices GV and GD should make both the augmented damping matrix

( L\ + ITDA and the augmented stiffness matrix E + TKA) symmetric and posi-

tive definite, in addition to achieving certain design objectives (e.g., in-
creasing the damping of critical modes to desired levels). The reason is sim-
ple, since it is well known that a closed-loop system as described by (6-7) is

asymptotically stable if both matrices (n + TDA) and ( + ITKA) are sym-

metric and positive definite, and closed-loop stability is a basic requirement.

Note, however, that the matrices L and 1 are not positive definite un-
less all their diagonal elements are positive. Also note that both matrices
DA and KA are singular, since there are more modes represented by (6-1) than

there are actuators or sensors placed on the structure (i.e., L , V' L D ) .

Moreover, the design of gains GV and GD$ in general, can be based only on a

reduced-order model of the structure; in other words, only a truncated version
of (6-1) can be used. Therefore, the asymptotic stability of the closed-loop

system (6-7) does not follow automatically with an arbitrary design of GV and GD.

Let subscript M denote the part of (6-1) that is included in the re-
duced-order model for control system design and subscript U the unmodeled

(i.e., truncated) part. Then Eqs. (6-1) - (6-5) can be rewritten as follows

+M +  + E 1M = T Bu (6-9a)

M MM MM MF

U + UU + ZUIU = IuBFU (6-9b)

u =-GVYV - GDY D  (6-10)

YV= CVqIMM + CV4UPU (6-11a)

YD = D MrlM + CD UqU (6-11b)

The design of gains GV and GD ignores the existence of the u:Lmodeled part com-

pletely, and is to make only the modeled part achieve desired damping and
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stiffness objectives. Due to control spillover to and observation spillover
from the unmodeled part, as can be seen from Eq. (6-9b) and (6-11), the overall
closed-loop system (6-7) may not achieve the damping and stiffness objectives.
In particular, the symmetry and positive definiteness of the overall matrices

A + ITDA,) and (z + ¢TKA¢) do not follow automatically from only making their

modeled parts, +and + 'LD Knd symmetric and positive defi-

nite. We have recently obtained the following general conditions (Theorems I
through 5) for guaranteeing the symmetry and positive definiteness of such
overall matrices and hence for guaranteeing the asymptotic stability of closed-
loop system (6-7). Such conditions are also useful as a guide in the design of
gain matrices GV and G . A useful special case is discussed in Subsection 6.2.

Theorem 1: Assume that DA is symmetric and "M+ AM) is positive

definite. Then, for + lTDAi , to be positive definite, ic is necessary
and sufficient that

T TDA - IA+ cTDA (6-12)
U U, U DMAU

U A- -U AM WA M) A

is positive definite.

Theorem 2: Assume that KA is symmetric and ( TM + MKAM) is positive

definite. Then, for + $ TKA ) to be positive definite, it necessary and
and sufficient that

2I EU + TK - IK i !K +(6-13)

UKA*'U U AlM M AM) MAu

is positive definite.

Comment 1: For closed-loop asymptotic stability of -lie overall system, it is
not enough just to guarantee the positive definiteness of the modeled parts

(AM + T AiM) and (EM + IMKA M). According to Theorems I and 2, the matrices

A1 and E1 defined by (6-12) and (6-13), respectively must be made positive

definite as well in the design of G and GD . This explains why current ap-
V D'

proaches to the design of LSS controllers (e.g., direct applications of state-
of-the-art control techniques only to the modeled part without any considera-
tion of the unmodeled part) cannot guarantee closed-loop asymptotic stability.

Comment 2: It is convenient as well as -ntuitively desirable to be able to
find a design of, say, GV such that the additional damping matrix for the

modeled part is diagonal. For example, using the pseudo-inverses of TB and
Tnd

C V1 with a diagonal. matrix will. make D ' diagonal. Notice, however thatVM M A M

those CV designed using such pseudo-inverses will make only , symmetric; to
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make the whole matrix (P D A symmetric requires that each velocity sensor beA T

collocated with a force actuator such that CV = kvB F for some nonzero constant

kV. Note, however, that collocation is not assumed in either Theorem 1 or 2.

Comment 3: These theorems are applicable to the general case of large space
structures that contain not only stable elastic modes but also rigid-body
modes and unstable modes. To provide a better insight into the requirements
in stabilization of general large space structures, refine the partitioning
of matrices A and Z as follows. Denote the group by subscript G if their
diagonal elements of A are greater than zero, and by double subscript LE, if
otherwise. Similarly, denote the groupby G' if their diagonal elements of
E are greater than zero, and by L'E', if otherwise. Then we get the following
similar general conditions

Theorem 3: Assume that DA is symmetric and (AL + TD) ipositiveA LE ILEDA LE) is pstv

T!
definite. Then, for (A + TDA) to be positive definite, it is necessary and
sufficient that

T A.A. D +1 6-12GDA G G ALE + LED A LE) LEDA (6-14)

is positive definite.

Theorem 4: Assume that KA is symmetric and ZL,E ' + LTL AILE,} is

positive definite. Then, for Z + TKA ) to be positive definite, it is

necessary and sufficient that A

+T, T' A ( 1T K ) -1  T
2  G, G GKAG ,  G KALE,L,E+ LElKA LE ,  LE,KA G'

(6-15)

is positive definite.

Comment 4: The unstable or undamped modes, having either nonpositive modal
damping or nonpositive modal stiffness, naturally should be included in the
model for designing gain matrices GV and GD, and at least both

( T ' n E T+ 11EBFGvC and + qLEBFGDC should be made positive
(LE LE F VV LE) ("LE E L'BCC )

definite. Theorems 3 and 4, however, show that this is not sufficient unless

both t2 and .25 as defined by (6-14) and (6-15), are guaranteed to be positive

definite. In general, flexible structures having small positive modal damping
(i.e., small diagonal elements of A ), and lower natural vibration frequencies

G
(i.e., small diagonal elements of ZG,) will be difficult in providing such

guarantees.

Consider the following common special cases: only rigid-body modes, and

elastic modes, undamped and lightly damped, are present. In the above partition-

ing, the groups denoted by LE and L'E' now correspond to only zero.
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diagonal elements of A and E, respectively. DenotLng these groups now by E
and E', we get the following two very useful consequences of Theorems 3 and 4,
concerning closed-loop stability and its robustness.

Theorem 5: Assume that each unmodeled elastic mode has some positive
damping, no matter how small it is. Then the closed-loop overall system (6-7)

is asymptotically stable, i.e., both + .'DA )and Z + qTKA are symmetric
and positive definite if

(a) DA and K are symmetric and at least positive semidefinite, and
A A

T
(b) DE (E andYEKA E, are positive definite.

Comment 5: This theorem implies that the closed-loop asymptotic stability is
robust to modal truncation, so long as conditions (a) and (b) are satisfied
and all the unmodeled (i.e., the truncated) modes have some positive damping,
finite or infinitesimal. First, unmodeled modes do not appear in conditions
(a) and (b) at all, control spillover and observation spillover thus have no
effect on closed-loop asymptotic stability so long as the assumption and con-
ditions of Theorem 5 satisfied. Second, closed-loop asymptotic stability does
not depend on how many damped elastic modes are included in the design model
nor on which of them are, since neither conditions (a) nor (b) depend on any
damped elastic mode.

Theorem 6: Suppose the gain matrices G and G have been designed to
V D

satisfy conditions (a) and (b) of Theorem 5. Let there be parameter variations
(or errors) in the mass matrix, the stiffness matrix, the natural frequencies,
or the mode shapes of the structure concerned. Assume that

(1) the number of rigid-body modes and that of undamped modes
remains unchanged, and

(ii) D = CE C
E E El E .ElCEl

Where the overbars denote the presence of parameter variations (errors); C, and

CE, are nonsingular matrices. Then the closed-lop overall system remains

asymptotically stable.

Comment 6: Theorem 6 implies that closed-loop asymptotic stability is robust

to changes in the shape of any damped elastic modes, modeled or not.

The following subsection (Subsection 6.2) continues the discussion of
this special case with a specific design of gain matrices GV and GD that can

provide not only the closed-loop asymptotic stability but also its robustness
to modal truncation and parameter variation. Before concluding this subsection,
we remark that the controllability and observability of all the rigid-body

modes, all the unstable modes (with either negative modal damping or negative

modal stiffness coefficients), and all the critical elastic modes, are assumed.

The actuators and sensors should therefore be properly placed or their existent

influences be properly synthesized, according to the techniques and conditions

previously derived; see Refs. 1-3; Subsections 6.3 and 6.4.
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6.2 Closed-Loop Stabilization with "Modal Dashpots" and "Modal Springs"

A special output feedback control design technique is presented in this
section for integrated control of elastic and rigid-body modes, for increasing
both the damping and frequency of selected modes, and for providing closed-
loop asymptotic stability and its robustness to modal truncation and to param-
eter variation. This technique represents an improvement over previous work

[4-8] concerning output feedback control of LSS or control of rigid-body modes,
and is an advancement along Canavin's modal-dashpot design philosophy [4].

Consider again the common special case of large space structures:
rigid-body modes, undamped and lightly damped elastic modes may all be present.
Assume that the rigid-body modes are not to be ignored as was in [4] but to
be controlled along with the undamped elastic modes and those lightly damped
elastic modes which are critical to the damping performance of the LSS. These
modes constitute the primary modes. Assume that the design model is formed by
these primary modes. Therefore, all other modes are unmodeled modes and all
are assumed to have some positive damping, despite how small they are. Using
the same partitioning as described at the end of the foregoing subsection, we
have the following direct consequences of Theorem 5.

Theorem 7: Denote the number of modeled (i.e., the primary) modes by
p. Assume that there are at least as many force actuators as there are modeled
modes (i.e., m > p), and that each force actuator is collocated with a velocity
sensor and a displacement sensor, (i.e., CV = kVBT, CD = kB T , for some non-

"VF' CD kBF' o oenn

zero constants kV and kD). Assume further that all modeled modes are com-

pletely controllable. Then the closed-loop system is asymptotically stable if
the gain matrices GV and GD are computed as follows

G V ((T )RMB '(CM

Gv B (~F) AM(CVL (6-16)

(,T (B)R (cM)L (6-17)

D MBF +

(D B B B BF + NF (6-18a)

(v) [(V M)T CVM]' (CVM)T + N V (6-1 9a)

(CD (DM)L [(CD'M )T CD"M]I' (C D M)T + ND (6-20a)

where AM and ZM denote two arbitrary positive definite p x p matrices desired

as the additional damping and stiffness for the modeled modes; NF3 NV , and ND
are any null-space matrices such that
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TT
IIB N =0 (6-18b)
M FF

kvN V  = NT (6-19b)
V F

kDN NT (6-20b)
D D F

Comment 7: It is technically convenient, though not necessary, to consider

AM and ZM as diagonal matrices. Canavin [4] originally called the resulting

modally decoupled velocity output feedback controllers "modal dashpots", in
which the rigid-body modes were ignored, no displacement feedback was consider-

,
ed, both N F and NV were zero, and A M was diagonal. Here, we extend the concept

in two ways. First, any velocity feedback controllers designed according to

(6-16), (6-18) and (6-19) are called (generalized) modal dashpots, so long as

L is diagonal. Second, any displacement feedback controllers designed accord-

ing to (6-17), (6-18) and (6-20) are similarly called "modal springs", so long as

the matrix Z is diagonal. It should be noted that these terms (including the
M

one initiated by Canavin) and, particularly, the implied modal independence in
the closed loop make sense only with respect to the design model. In the
presence of unmodeled modes, the modeled modes may not maintain their designed
independence due to control and observation spillover.

Comment 8: Since the gain matrices ,V and C given by (6-16) - (6-20) represent

a special form that satisfies conditions (a) and (b) of Theorem 5, the asser-

tions on robustness of closed-loop asymptotic stability to modal truncation
and to parameter variation remain valid; see Comments 5 and 6, and Theorem 6.

Comment 9: Stability and robustness results for the special subcase [9] in
which there are no undamped elastic modes, matrices NP, NV , and N in the design

. *D

equations (6-18)-(6-20) are all zero, matrices AM and ZM in design equations

(6-16)-(6-17) are all diagonal, and matrix CE in Theorem 6 is diagonal were ob-

tained jointly with Dr. Y.H. Lin of the Jet Propulsion Laboratory, California
Institute of Technology (who was formerly with the C.S. Draper Laboratory).
Various numerical demonstrations were also made, using a 10-meter free-free
beam.
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6.3 Prevention of Control and Observation Spillover by Synthesis of

Actuator and Sensor Influences

Theorem 5 implies that for LSS having no unstable modes whatsoever and
no undamped unmodeled modes, control and observation spillover will not cause

closed-loop instability so far as output feedback control is concerned. The
design of the output feedback controllers can be based entirely on the modeled

modes which include all rigid-body modes, all undamped elastic modes, as well

as critical elastic modes. Nevertheless, the closed-loop performance of the

vibration controllers (e.g., the damping and frequency shifting of primary

modes) will be degraded if control spillover and observation spillover exist.

Theorems 4 and 5 imply that control and observation spillover problems may
make it difficult to guarantee closed-loop stability of LSS having some unsta-

T o
ble modes, unless the control spillover matrices 'GBF and observation-

spillover matrices C V G and CD G" are all of small magnitude. It is now a

standard understanding that control spillover and observation spillover will

cause closed-loop instability for LSS using state-feedback controllers with

state estimators.

Control spillover to and observation spillover from secondary modes can

be prevented by proper placement of actuators and sensors on the structures
and by proper synthesis of actuator and sensor influences [10-12]. We have re-

cently concluded that the technique proposed in [10-12] for synthesizing actu-

ator influences can be extended not only to the synthesis of sensor influences
(because of duality) but also to the placement of actuators and sensors. The

formulas derived [10-12] for proper placement of actuators (and sensors) can

be recasted into similar mathematical forms for proper synthesis of actuator

(sensor) influences. A general-purpose computer program is being developed for

synthesizing actuator influences so that control spillover to secondary modes

is prevented and, moreover, desired control influences on primary modes is ob-

tained.

For preventing control spillover to secondary modes by synthesis of

actuator influences, the control spillover matrix T B Fis to be transformed

using column operations Q and row operations P such that

[21 2 ] = P(jBFA 
(6-21)

with W being nonsingular and having the same rank at I B .Such transforma-
11 S F

tion (using Q and P) can be accomplished by Gaussian elimination, Gram-Schmidt

orthogonalization, or singular-value decomposition. Preferably, W 12 is made

to be zero. Then the synthesizer F for prevention of control spillover to

secondary modes, i.e., as a solution of
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v BTF = 0 (6-22)
S F

is given by

- (Q W7IW1 2 + Q2P (6-23)

where Q [Q1 , Q2]. The matrix F represents free parameters and can be adjust-
ed for achieving desired control influences on primary modes. Let B denote
a desired control-influence matrix for the primary modes. Then P is to be
solved from the following equations

(-VIWIw 12 + V2 ) = (6-24)

where

rV1,V2 = -Q, (6-25)

The program under development is first to carry out the transformation

(6-21) using Gaussian elimination, so that W12 = 0. The transformation (6-25)

of actuator influence matrix V BF on primary modes is carried out simultan-

eously, since the same operations Q are used. This program is then to compute
r from (6-24). A desired synthesizer r is thus obtained from (6-23). Notice

that W12 in both (6-23) and (6-24) is zero. A very simple and specific version
was developed for application to the Draper tetrahedral model of LSS. Modifica-
tion, generalization, and addition are underway.

For preventing control spillover to secondary modes by placement of

actuators the corresponding formulas for determining the proper actuator-
influence matrix B F are as tollows

WIW = TQ (6-26)

with W being nonsingular and having the rank of S, which is equal to the

number of secondary modes. BF is to be a solution of

B = 0 (6-27)
S F
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and is given by

BF = (-QIW7I 2 + Q2)B (6-28)

where Q = [Q,,Q2] and B represents free parameters. Let B denote a desired
control-influence matrix for the primary modes. Then B is to be solved from

I1 2 + V2 )' B (6-29)

where

v1 v = pQ 1,Q2  (6-30)

The one-to-one mathematical similarity between (6-26) - (6-30) and (6-21) -
(6-25) is obvious.

To place actuators to prevent control spillover to all nonprimary modes,
if possible, is to find a matrix B such that the composite matrix M'pE is re-

alizable as actuator influences, where M deontes the mass (inertia) matrix and
the orthogonality of mode shapes is used. The influences of a real actuator on
LSS are zero at some modes, and nonzero at others. So, the realization of
the above ideal actuator influences by placement is to find B such that "con-
trol spillover" to some modes is prevented while desired control influences at
some other modes are obtained. The applicability and usefulness of the above-
mentioned general-purpose computer program initially only for synthesis of
actuator influences is obvious.
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SECTION 7

STOCHASTIC OUPUT FEEDBACK CONTROL

7.1 Introduction

The minimum variance fixed form output feedback compensator has been
recently proposed [1,21 as a possible sulution to the problem of designing
reduced order controllers for plants of large dimension. The zero order
limit of this compensator, the stochastic output feedback controller [3],
is of particular interest because it is the easiest such compensator to
implement and simultaneously results in the simplest design problem. The
price of this simplicity is that this compensator generally achieves poorer
performance than optimal compensators of higher order. As a result, the
stochastic output feedback controller should prove useful in assessing
complexity/performance tradeoffs in the design of simple compensators for
complex plants.

Like the reduced order compensators Lonsidered earlier by Levine,
Athans and Johnson [4,5,6], however, even in the zero order limit the
minimum variance fixed form output feedback compensator gains and cost are
difficult to compute, especially for plants of large dimension. Consequently,
upper and lower bounds on the optimal constant gain cost that are relatively
easy to compute have been developed and are described in the following
sections. Specifically, Section 7.2 presents a more detailed discussion of
the stochastic output feedback controller and its relation to several other
compensator formulations such as the minimum order dual observer based
compensator [1,7] and the Levine-Athans-Johnson reduced order compensator
[4,5,6]. Section 7.3 derives an easily computed lower bound on the optimal
stochastic output feedback controller cost while Section 7.4 derives three
easily computed upper bounds on the cost. Finally, Section 7.5 discusses the
principal results of the previous sections.

7.2 Minimum Various Fixed Form Output Feedback Compensator

Consider a plant of the form

x(t) = x~(t) + Bu(t) + v(t) (7-1)

with observations

Y(t) = Cx(t) + W(t) (7-2)

Here x(t) e R is the plant state vector, u(t) c Rm is the control input

vector, y(t) c Rp is the observation vector and A, B, C are constant matrices

of dimension nxn, nxm and pxn, respectively. The vectors v(t) c Rn and

w(t) 6 Rp are white noise processes representing plant driving nois'e and
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observation noise, respectively. These are independent stationary zero-mean
processes with covariances

E{v(t) v'(T)} = V6(t - T)
and

E{w(t) w'(T)} = 14(t - T)

(7-3)

As defined in [1,2], the minimum variance fixed form output feedback compen-
sator is of the form

u(t) = Hz(t) + MX(t) (7-4)

where z(t) E Rq is the compensator state vector whose dynamics are described
by

z(t) = Fz(t) + Gy(t) (7-5)

Here F, G, P and M are constant matrices of dimension qxq, qxp, mxq and mxp,
respectively. If mean-square stabilizing compensators of this form exist
for given dynamic order q, the optimal compensator is defined as the one
that minimizes the asymptotic state covariance weighted by the nxn matrix Q
of design parameters with respect to the matrices F, G, H, and M, i.e.,

J = lim E{x'(t) Q x(t)J (7-6)
t->00

Necessary conditions for the optinality of this compensator are presented
in [1,21 for compensators of arbitrary dynamic order q. Two cases of
particular interest are the stochastic outtput feedback compensator (SOFC),
corresponding to q = 0, and the minimum order dual observer based compen-
sator (MODOBC), corresponding to q = n - m.

For the SOFC problem, the necessary conditions reduce to

(A + BMC)X + X(A + BMC)' + V + BMW'B' = 0 (7-7)

M = -(B'PB)I B'PXC'W t  
(7-8)

P(A + BMC) + (A + BMC)'P + Q = 0 (7-9)

assuming the required inverse exists. The nxn matrix X represents the
asymptotic state covariance matrix so the cost may be expressed as

J = tr[QX] (7-10)
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the plant (A, B, C, V, W) by

-j+ = B- BM (7-15)

so that

B+fiBjMj => J(M) f J.(M*) (7-16)

However, since B-l exists, the optimal gain M* associated with (A, B, C, V9 W)
can be computed from (7-12) with the optimal cost computed from (7-13) as

Jo = tr[QXo] (7-17)

Clearly, then, we must have

J < J(M) (M*) (7-18)

so that J represents a lower bound on the optimal SOFC cost for the plant0

(A, B, C, V, W) for any actuator influence matrix B.

-1
Note that if B does not exist, the computation of the lower bound

cost J 'is easier than the computation of the MODOBC cost since it is not
0

necessary to first transform the plant into standard controllable form. If

B-  does exist, it follows that m = n so the MODOBC problem and the SOFC
problem are identical. In this case, the problem is effectively in standard

controllable form (i.e., the required transformation is z(t) = B- x(t), so
no additional work is necessary. Finally, note that the covariance equation
(7-13) is the same algebraic Riccati equation that is used to compute the
Kalman filter gains required to estimate the state of the open loop plant.

Consequently, many theoretical and numerical results are available pertaining
to its solution. For example, it is known [11] that if the open loop plant
is stabilizable and detectable with respect to the noise sources, there
exists a unique positive semidefinite solution X that is positive definite0

if and only if the system is completely controllable from the plant driving
noise.

7.4 Suboptimal SOFC Compensators

The simplifications of the optimal SOFC problem resulting when B
- 1

exists suggest that it may be profitable to cast the problem in terms of a

generalized inverse [12,13] of B when B does not exist. To do this, note
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that the gain expression may be written as

M = -B+XC'W -  (7-19)

where the generalized inverse B+ is given by

B+ = (B'PB)-IB'P (7-20)

and is in fact a weighted least squares inverse [13] of B. That is, defining
S as the positive definite square root of P (assuming P is positive definite).
i.e.,

S'S = P , S > 0 (7-21)

the vector x = B + is the minimum S-norm approximate solution of the-O

inconsistent equation Bx = y. Consequently, an alternate way of viewing the

optimal SOFC design problem is as that of minimizing the error

e = 1Bu + XC'W-1 IIs = ISB + SXC'W-lyi (7-22)

subject to the constraints

u = H(7-23)

(A + BMC)X + X(A + BMC)' + V + B?4JM'B' 0 (7-24)

P(A + BMC) + (A + BMC)'P + Q = 0 (7-25)

where S'S = P. Physically, equation (7-23) just specifies the form of the
control law, equation (7-24) defines X as the closed loop state covariance
and equation (7-25) relates the norm I1'-l S to the cost weighting matrix Q.

Note also that if B- I exists, it is immediately apparent that the minimum
error e = 0 is achievable independent of the norm II HS. This formulation

of the problem thus makes immediately clear the independence of the optimal
gains from the design parameters noted in Section 7.3 when B is non-
singular.

This formulation of the optimal SOFC design problem also suggests

several suboptimal control problems that may be useful in obtaining either
upper bounds on the optimal SOFC cost or initial gain estimates for
iteratively computing the optimal SOFC gains. For example, since the
principal difficulty in computing the optimal gains is the coupling between
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equations (7-24) and (7-25), one possible approach would be to assume a
least squares weighting S and minimize the error defined in equation (7-22)
subject to constraints (7-23) and (7-24). Defining P = S'§, the solution
to this problem is

-1
MI f -(B'PB)-IB'PXI ClW- (7-26)

where the closed loop covariance X satisfies the equation

AX1 + XIA' + V - XIC=W-1CX -(I - B(B'PB)- 1B'P)XIC'W-cxI(I - PB(B'PB)-B')

(7-27)

A particularly convenient choice of weighting matrix S would be the nxn
identity matrix, reducing the problem to a standard least squares minimi-
zation.

Another possible approach to decoupling equations (7-24) and (7-25)
would be to assume a value X for the closed loop state covariance and minimize
the error defined in equation (7-22) subject to constraints (7-23) and
(7-25). The solution to this problem is

M2  = -(BP 2B)-B'P2 X'W 1  (7-28)

where P satisfies the equation
.2

P2A + A lp + Q - P B(B'P B)- 1B'P XC'W-IC - C'W-1 CXPB(B'P2B)-B'P

PA+ 2 2 2 22 2 2 2 B 2 0

(7-29)

with the least squares weighting matrix S2 defined as the positive definite

square root of P2. A particularly convenient choice of covariance matrix

would be the lower bound covariance X defined by equation (7-13) since the

suboptimal solution then becomes exact when B is nonsingular.

Finally, a third suboptimal SOFC problem results if both the least
squares weighting matrix S and the closed loop covariance matrix X are fixed.
In particular, assuming S - S and X - X, the suboptimal gain M3 is given by

M3 - -(B'PB) B'PXC'W- 1  (7-30)
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where P S'S as before. Note that if S is taken as the nxn identity matrix
this approach i. very similar to Kosut's minimum norm suboptimal compensator
for the Levine-Athans-Johnson reduced order compensator [14].

7.5 Conclusions

Motivated primarily by the exact solution of the optimal SOFC problem
when the actuator influence matrix B is nonsingular, bounds have been derived
for the optimal SOFC cost for plants with singular B matrices. These bounds

satisfy the inequality

min (Jo,J_) 5 max (Jo,J_) S j 5 J S J J+++ (7-31)

where J is the optimal MODOBC cost for the plant (A, B, C, V, W), J is the'

optimal SOFC cost for the same plant but with a nonsingular B matrix, J is
the optimal SOFC cost and J+, J++, J.. are the costs associated with the

suboptimal gains Mi, M 2, and M 3 ranked in order of increasing cost. It

should be noted that if B is nonsingular, it follows immediately that
J = J- J = Jl and that if X is taken as the solution Xo of equation (7-13)

in computing M2 and M 3, J2 and J3 are also equal to the optimal cost.

In terms of computational difficulty, the cost J is clearly the
0

easiest to evaluate, requiring the solution of a single Riccati equation. If
the plant is in standard controllable form, the optimal HODOBC cost J_ is
equally easy to compute, but if it is not (as is normally the case), the
evaluation of J can be considerably more difficult. Of the upper bounds,
the cost J3 is the easiest to evaluate, requiring the solution of a single

Riccati equation if X is available. Evaluation of J is somewhat more

difficult since it requires the solution of equation (7-27) which is not a
standard Riccati equation. Similarly, the cost J2 should be still more

difficult to evaluate because of the more complex nonlinearity of
equation (7-29). Note, however, that all of these bounds on the optimal
SOFC cost are more easily evaluated, assuming they exist, than the optimal
cost itself, since they involve the solution of uncoupled equations.

In terms of applications, three possibilities are apparent. First,
the lower bound J and the upper bound J3 should be useful in preliminary

03

evaluation of optimal SOFC performance for particular applications. This
would be particularly convenient if the lower bound covariance X were used

o

in the computation of the suboptimal cost J Secondly, an examination of

the suboptimal compensators M 1 and M2 suggests a possible computational

algorithm for evaluating the optimal SOFC gains M. Specifically, if

reasonably efficient algorithms could be developed for solving
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equations (7-27) and (7-29),^it might be reasonable to approach the problem
by first fixing either P or X, solving the appropriate equation to~obtain
X or P, respectively, and using these to derive updated values of P or X
from the other equation. Finally, any of the suboptimal gains M1 , M2 or M3

could be used as a starting estimate for any iterative calculation of the
optimal SOFC gains, as has been done with Kosut's suboptimal compensator in
evaluating the Levine-Athans-Johnson reduced order compensator gains [151.
Because of its relative ease of evaluation, M3 appears to be a particularly
attractive candidate for this application.
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SECTION 8

CALCULATION OF OPTICAL LINE-OF-SIGHT

8.1 Introduction

For the ACOSS test problem #2 we need a line-of-sight model giving
the law of displacement of the image of a target when the structure deforms.
The purpose of the model is to give line-of-sight changes of the same order
of magnitude as those produced by current DARPA large wide-angle optical
systems.

We assume that the mirror surfaces are simply displaced and maintain
their nominal shape. We also neglect any effect of light redistribution in
the image.

The structural model given is shown in Figures 8-1 and 8-2. It was
assumed that the base optical design would be close to an existing DARPA
design. The mirror shapes are off axis sections of rotationally symmetric
surfaces which are coaxial. As we want only a first order model and neglect
the influence of light distribution in the image of a point, the asphericity
of each mirror was disregarded.

8.2 Results

The line-of-sight change is the sum of the changes due to the
displacement of each of the components of the optical system taken indi-
vidually. For a given mirror or focal plane displacement, the location of
the intermediate and/or final images are calculated using the well-known
(see Ref. 1) first order optics equations

1 1 2

= (8-1)

M = do (8-2)

d0

relating the distance d1 between the image and the mirror, the distance do

between the object and the mirror (both distances being taken along the
optical axis), the radius of curvature r of the mirror and the
magnification m. The equations (8-1) and (8-2) utilize the vertex of the
mirror as origin; therefore, when a mirror is displaced, the results are
given in relation to the displaced positions, and this is taken into
consideration in the transfer to the next mirror.
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Using the paraxial optics equations (8-1) and (8-2), expressions
relating optical element movements and the resultant longitudinal defocus zf
and transverse defocus (xF, yF) are given for the three-mirror ACOSS

system. Translations of the mirrors are represented by the displacements
of the vertices, and rotations are defined for each mirror with the pivot
point located at its own vertex (on the optical axis). Movements of the
focal surface are also considered; xI and yl are the coordinates of the

image point, and the pivot point for rotation is again at the intersection
of the focal plane with the optical axis (see Figure 8-3). Line-of-sight (LOS)
error is determined by the transverse defocus (xF, yF) .

The pertinent variables are defined as follows:

R = radius of curvature of the primaryP

Rt  = radius of curvature of the tertiary

ti axial distance between the primary and the secondary

t2  = axial distance between the secondary and the tertiary

We will use the letter ot as a running index which stands for the letter p
for primary, s for secondary, t for tertiary and F for focal plane, x i
will represent the displacement of the element a along the ith axis
(see Figure 8-3) and 0. will represent the counter-clockwise rotationia

of the element a about the ith axis (looking towards the origin). With
these notations the defocus components (xF, YF' ZF) will be given by

[ (R ]
xF = -xlp +xit -Rp 2 p +

2 2s R+ t 
2 O2 tT 2T Rt

+ xIt - XiF + 83FYI

(8-r3)

[ R ] Rt
YF [-x2p 

+ xt + Rp 6p - 261s ( + t + 20 tT 2T R t

+ x2t - x2F - 83FXI

(8-4)

R 
2

zF x-x -x)2+ 3  X3 Fz F x 3 - x 3 + 3d[R p - R t + t2(t 1 + t 2)] 2 +x3

YIelF + xie 2F

(8-5)
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Figure 8-3. Three-mirror system.
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where

R

T = 1+t + t2 (8-6)

The LOS error is given by

=LOS ( , pf (8-7)

where f is the focal length of the system and is expressed as

RR
f (2Tt p (8-8)f=2(2T R dt

The magnitude of the LOS error is given by

4. 1 (x2 + YF2 (89
OLOS' = (8-9)

The location of the image plane is a function of the parameters of the
three-mirror optical system. The distance BF between the tertiary mirror
and the image plane (see Figure 8-3) is given by

RtT
BF t  (8-10)2T- R

and for all cases the focal surface must be placed at this location, or,
alternately the radius of curvature of the tertiary should be calculated
using

R 2T BF (8-11)

t T + BF

so that the final image coincides with the focal plane.

In the above expressions, all radii of curvature and axial distances
should have positive values.

It should also be reiterated that all rotations of the individual
elements are defined with the pivot points on the optical axis. The justi-
fication for this definition lies in the fact that all three elements of
the optical system are coaxial, i.e., the centers of curvature of these
elements lie along a common axis.
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As a final note, the (xF, YF' ZF) expressions were derived with first-

order paraxial optics. As a consequence of this approximation, the angle of
incidence of the object radiation and all displacements and rotations of
the individual elements must be small. If this condition is not met, not
only will higher order terms become appreciable, but the focal length and
consequently the backfocus BF will change and aberrations of the optical
system will no longer be negligible. Therefore those equations cannot be
realistically used in an open attitude control loop.

8.3 Application to the Test Case #2

For the test case #2 corresponding to the structural model given on
Figures 8-1 and 8-2, the primary and tertiary mirror vertices are coincident,
and the focal plane and tertiary mirror (flat) are coplanar.

The numerical values of the basic variables which have been used are:

R = 53.9
P

t I = t 2 = 20

BF = 20

T, Rt and f are calculated using Equations (8-6), (8-11), and (8-8).
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SECTION 9

DRAPER MODEL #2

9.1 Introduction

In order to assess the performance, sensitivity, and hardware
requirements of the various active structural control methods which are
being developed, a universal system model is required. This section contains
a complete description of Draper Model #2 which is a simple but realistic
evaluation model. The design of this system was driven by the desire to
incorporate certain attributes into the overall system characteristics.
The desired features were

" structural design based on realistic sizes and weights

e a simple unclassified optical system with associated
performance measures and tolerances

" a set of disturbances typical of equipment vibration and
attitude control (slew).

The resulting model is described in detail in Section 9.2 along with the
resulting mode shapes and natural frequencies of the system. Section 9.4
contains a description of the line of sight (LOS) performance measure
including theory and implementation. The tolerances on the optical system
and a set of disturbances are given in Section 9.5. A perturbed model
which can be used to evaluate the sensitivity of the control system is

given in Section 9.6.

9.2 Structural Design

The example problem is shown in Figure 9-1. It consists of a
flexible optical support structure and an isolated equipment section which
contains the solar panels.

9.2.1 Optical Support Structure

The optical support structure consists of the upper mirror support
truss, lower mirror support truss, and the metering truss which maintains
mirror separation. The finite element model is shown in Figure 9-2. It
contains 35 node points and 117 beam elements. The structure is configured
as a truss, but it is assumed that all joints allow a full moment connection.
Thus, both bending and axial stiffness are included in the model for al!
structural members. All members are assumed to be graphite epoxy hollow
tubes. The sizes and section properties are given in Table 9-1. The mass
of this subsystem including the structural mass, mirrors, and equipment has
been lumped at 18 node points as shown in Figure 9-3. The total mass of
the optical support structure is 5084 kg.
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FOCALPLANE SOLAR PANELS

EQUIPMENT SECTION

Figure 9-1. Draper model No. 2.

103



C%'

fDat

a. 0U

a-A

000

C4.

C.44

104



E

z
0

w

0

CIA

(%4 C$

:3

E

105A



0

0 W 0' AL
1% I II

o 0 0 -W n 0 0

Lr r- r4 .- r- 4 H r-4

0 x x x x

x m h 0 r- V. M
m Ln -4 0 rl- V.

o~C .4, 4
o v 9 0 a a;' ; 4

Ln

2 2

H >4 0 >4 0
E-4 C1 H E- -w H t-)

-t 1

-F

-4-4 Ix
o n .r. co1- .C

o 0 04 0 mH 0

X 10

o> 4 *4 0

E-4 4H P>3E4 cl H

106



o000 0 0 0D 0 0 0 0D 0 0 0 0 0

o 0 0 0n 0 C0 0 0 C0 0D 0 0 0 0 0

o% 0000 04 0D 0 0 %0 0 %0 0-0

A0 0 0 LA l.A 0A 0f 0) 0l 0l 0 00

z

D 0
N
P4

41 IN IN (
0

0n 0 0

H 04 0 CD -4 Ln X I

.0 CIS x

(A l 
L n

E-4 Ln

LA z
N LA

1--4

Ln %D

10



0 L

0

0~

to

Hn V w- I n V L L r

E-4

H ~ z

0

E-4

w r-M C) r m m m IR
En V .- - - 4 -4 4 -4

U)

108



on o 0) 0

0 0 0,

0 Ln &n Ln Ln Ln 0 0C Ln in LA LAO 0 LA

N ~ ~ r m. 0, 0 N rn 0

4

Ch N

cIco

0

E-

00



(7 O I 04 m (vi H1 H- H H 0 000D0 0 H Ni rs m~ m
H H H - IV -V Ht H- r- r- T Ir q H H- H4 H- H-

0 0z

N m LA Lf t.o N 00 ON 0~ q C4 m~ OHt Ln o 0 O N H N-

E-z

H W

H 4

00

0
U

04 fn (cr V MA '0 '0 W. -N N 4 Mi OHn W (

E -

0

011



0 -1 0 0

00

N tn
-4-

E 4

z (W

E-4

'-I4

cnn



m T - D L n r )r 0n r-w

ko N - 00 ol) C) N -N 1 -.D O ) O o 0 0 - co (N C) 1- L
o co mN mN a) o) (N a) mN m mm m m m oc

cl0

z r-4 -4 4 - I -4 r -I -4 4- - - 44 r - -4 - 4 - 4
0 0

z

4.W -W N %D r- 0-4 c m0 C i 0 D CD0 04 r4 Nm

00

E-4

H
H

Z 0 .-4 - -4 ~4 - .- - .-4 O-4 0 1-4 -4 N 4- -4oW 0T -r ' tr - r - -0 o0 0O 0

o112



Nl C N N 0 LA Ln

LA" LA) LA LA 0 0

CN

0 0 0 0 0 00 0 0) C0 0 0 0> 0

0 0* 0N 0 m M 0 0n en 0f00 )

z
m

-.4

0%

.00

00

0 E,
z --

N4 N

E 14
mm

0

A4A

111



m NT mz mm Ln m on Df wn r- a) r, ko .Q

0

~~~. w. 0 0 1~.~ N~O W O -1 r N m -z Ln -. j .- q -i
m N m N " mm mnm MenMm m Nl cNl m

0

-q q n -T i) c NW co 0) C -q CN re) -IT n v NW 00 ol C
r-I -4 r-4 r4-i ,-i l-1 r-4 CN N (N N N N N N 1 N m~

00

-4

zJ u
r, w w 0 r4 O X - C Q r l - m 0 D c

0
E- z W 0 44 a 0 ~ NC QN ~ W N O

0

CJ) k. r- N o C) a~ 0 N N W -N W 0f 0o - No WN 0 1- N On -T Nr
Ln n N r N n N r N r Nm N o N, N o N , N m N N N o N -mm mm mmr-r

~110



500.0

37

35 28 37'.0

39 
26 36

38 375.0
27

31

2

500.0 kg

16
33

4

17.0 18

15

19
17.0

8.0 17

50 .0

3 TOT A L 5408 kg

12

9 500.0

2

7
4

3

Figure 9-3. Optical support structure-mass distribution.
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9.2.2 Equipment Section

The equipment section consists of a central rigid body and two
symmetric solar panels. The support structure for the solar panels is a

hollow graphite epoxy tube. The structural properties of the solar panels

are not included in the model. The inertia properties are lumped at 6 node
points on the support structure. Details of the finite element model and
the inertia properties of the equipment section are given below in
Figure 9-4.

- 5 48

4 64 9

47 -45

Figure 9-4.

Rigid Body Properties Solar Panel Properties

i*Node 44 Nodes 48, 52, 53, 57 Node 50, 55
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Ix =2100 kg-rn2  Ix =270 kg-in2  I 540 kg-n 2

xx xxxx

1 2100 kg-rn
yy
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9.2.3 Isolation System

The optical support structure and the equipment section are connected
by a passive isolator at three points acting in all three translational
directions. The isolator is designed to reduce the amount of force trans-
mitted from the equipment section to the optics. This is accomplished by
designing an isolator with the natural frequency much lower than expected
disturbance frequency. In addition, the isolator frequency should be lower
than the optical structure bending frequency. A passive isolator consists
of a spring and a viscous dashpot in parallel as shown in Figure 9-5.

MPRECISION SECTION

K C
EQUIPMENT SECTION

K(M1 + M2)

isol 2 MIM 2

Figure 9-5.

If the isolator frequency is lower than the lowest natural frequencies of
the two sections, they can be modelled by their inertia properties only.
For this system, the isolator was sized to have a frequency of 0.5 Hz. The
dashpot size has been specified as it is assumed to be part of the overall
control design. The spring constants are given in Table 9-2.

9.3 Structural Analysis

A modal analysis was performed using the NASTRAN finite element
program. The input deck is listed in Table 9-3. This model contains
84 dynamic degrees of freedom, thus 84 frequencies and mode shapes were
extracted. Table 9-4 gives a list of frequencies and descriptions of the
first fifty mode shapes.

9.4 System Performance

The performance of this system is measured by the ability of maintain
line-of-sight (LOS) rotation (jitter) and defocus within specified tolerances.
These quantities can be computed using simple linear equations with the
movement of the mirrors as inputs. The motion of the mirrors is a function
of the movement of the support points. This section presents the equations
necessary to compute LOS error from support point displacements.
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ISOLATOR SPRING CONNECTIVITIES

TABLE 9-2

SPRING A NODE A DOF NODE B DOF

1 4 1 42 1

2 4 2 42 2

3 4 3 42 3

4 3 1 46 1

5 3 2 46 2

6 3 3 46 3

7 6 1 47 1

8 6 2 47 2

9 6 3 47 3

K 5790 N/m
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9.4.1 LOS Error Algorithm

The equations (9-2), (9-3), and (9-4), relating optical surface

motion and the resultant LOS rotations about the X and Y axes
below with notations and orientation consistent with the structural
analysis. The movement of each mirror is defined to be the displacements
and rotations in the global X, Y, Z directions at a point on the sphere

(primary, tertiary) or plane (focal plane) which intersects the optical

(global Z) axis. The LOS rotation and defocus are given by

LOSX = Y/F LOSY = X/F Defocus = Z (9-1)

where

F = 8.051

X = AI[-X + X - R'6Y + A 2 .OY - 2T*eY t + Xt - Xf (9-2)
p t t t

Y = A [-Y + Y + R.OX - A 2.X + 2T.eX t + Y - Yf (9-3)
1 p t p 2 s tt f

Z = A [Z - 2Z + Z t ] + z - zf (9-4)
3p s tt

where

A, = 0.2987

A = 93.902

A3 = 0.0892

R = 53.9

T = 66.95

The terms Xi, Yi' Zi' 6Xi' eYi' 6Zi refer to the translations and rotations

in the global X, Y, and Z directions of the primary (p) and secondary (s),

tertiary (t), and focal plane (f).

9.4.2 LOS Error Algorithm Implementation

The motion of each mirror is based on the displacements of the

support points and its po3ition relative to the optical axis. It is assumed
that the mirrors are kinematically mounted in order to decouple their dynamic

motion from the structure. A typical kinematic mount is shown in Figure 9-6.
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P

Y0

C

A B

Figure 9-6. Kinematic Mount

Point A is supported in X, Y, and Z directions, Point B in the Y and Z
directions, and Point C in the Z direction. Using small displacement theory,
the displacement and rotation of any point P can be found.

AxP = AxA + zPAeY - YPA6 (9-5)

A = AyA - z AOX - X.PAO (9-6)

Az., = A z A + y PAex - xPAe y (9-7)

where

AO = A zz(98
x (AC -AA + xc(AzA -zB)/xB)/YC(9)

Ae =(Az~ - Az )/xB (9-9)

AeO = (Ay B - AYA)/xB (9-10)

The locations of the support points and point P for each surface in this
system are shown in Figure 9-7 and are summarized in Table 9-5.
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Figure 9-7.
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Surface Node A Node B Node C X Y Z
p p P

Primary 34 35 30-28 4.0 10.0 0.0

Secondary 40 - - - - -

Tertiary 27 29 33-32 4.0 -3.0 0.0

F.P. 11 9 40 -4.0 -5.0 0.0

Table 9-5

It should be noted that since node C of the primary and tertiary is not
located at a structural node point, the displacement can be found by inter-

polating between the two nodes given in the table. Also, all six degrees of
freedom of the secondary correspond to the six degrees of freedom at node 40.
The location of point P is in the local coordinate system of each mirror
which are all parallel to the global coordinate system. Using equations
(9-5) - (9-10) and the information in Table 9-5, a displacement transformation
matrix (DTM) which relates the motion of each mirror to the displacements of
the support points in the global coordinate system.

If modal analysis is employed to compute the displacements, the LOS
error and defocus for each modal vector can be computed beforehand and the
total errors found by modal superposition.

LOSX

LOSY [= OS {n} (9-11)

z

where [0LOS] is a matrix which relates LOS error and defocus to modal

amplitude. It is computed by first computing the mirror motions due to each
mode shape using the DTM and then applying equations (9-1) through (9-3).

For Draper model #2 [0 is given in Table 9-6 for modes I - 50. It was

calculated using mode shapes which were normalized to unit generalized mass.

9.5 Parameter Variations

In order to assess the sensitivity of the control system to changes in
the natural frequencies and mode shapes, a set of perturbed frequencies and
mode shapes can be used. This perturbed model can be obtained by either
varying the frequencies and mode shapes directly or by changing selected
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Table 9-6.

HOOE LOSX LOSY DEFOCUS LOSMAG FREQ

1 0.27050-04 0.37780-03 0.93130-09 0.37870-03 0.0001
2 -.15600-04 0.84260-06 -.10630-07 0.15820-04 O.OGO1
3 0.49270-03 -.31330-04 -. 96040-09 0.49370-03 0.0001
4 0.11660-03 0.1155D-03 0.43660-10 0.16410-03 0.0001
s -.3502D-04 -.8110D-03 -.27210-08 0.81170-03 0.0001

6 -.78350-03 0.46760-04 0.69850-09 0.7849D-03 0.0001
7 -.26410-06 0.3Z630-03 -.49040-07 0.32630-03 0.1455

8 0.34390-06 -.2141D-03 -.1099D-05 0.2141D-03 0.2632
9 -.15050-05 -.34520-06 -.52380-05 0.1544D-05 0.3173

10 -.22930-03 0.44070-06 -.1467D-06 0.22930-03 0.3329
11 0.60410-05 0.10660-05 0.15590-04 0.61350-05 0.4432

12 0.73590-03 -.676C0-05 0.19060-05 0.73600-03 0.5779
13 0.23300-05 0.87310-03 -.42760-06 0.87310-03 0.5814
14 -.1027D-05 -.23620-03 -.48310-07 0.23620-03 1.2238
15 0.37590-05 -.15190-03 -.77630-05 0.15190-03 1.3002
16 -.15390-03 -.14130-05 0.93640-05 0.15890-03 1.3475

17 0.27380-04 -.27770-02 -.49550-04 0.27770-02 1.7209
18 0.&5900-05 -.49760-06 0.2634D-05 0.26370-05 1.8187
19 0.11510-04 -.23640-05 -.54930-06 0.11750-04 1.8187
Z0 -.35970-13 -.3518D-14 0.30300-14 0.36150-13 1.8892

21 0.22370-04 0.13760-01 0.90280-05 0.13760-01 2.3635
22 0.13450-03 0.27240-05 -.15090-04 0.1346D-03 2.9895
23 -.43550-05 -.260Z0-03 0.25000-05 0.26020-03 3.1759

24 0.55730-06 -.45360-03 -.4250-06 0.45360-03 3.3873
25 -.18140-.3 -.43980-15 0.26010-14 0.18150-13 5.1617
26 -.33950-04 -.7013D-06 0.47470-05 0.33960-04 5.2603

27 0.103 0-14 0.72640-16 -.96140-16 0.10400-14 7.8769
28 -.4275D-03 -.17010-02 -.19500-03 0.17530-02 8.1168

29 0.29160-03 0.47750-06 -.3630D-05 0.2916D-03 8.3600
30 0.18680-01 -.11030-04 0.10720-02 0.18680-01 8.5706
31- -.3822D0-04 -.29190-06 -.37550-05 0.38220-04 8.8135

32 -.4ti940-04 0.77800-07 0.9546D-06 0.44940-04 8.0135
33 0.37620-05 0.89950-05 -.52400-06 0.97500-05 11.3462

34 -. 12Z50-02 0.18700-02 0.398Z0-03 0.22360-02 11.4978

35 0.10Q&0-01 -.56620-03 -.15930-01 0.10990-01 12.7258
36 0.20970-04 0.74750-03 -.68650-04 0.74780-03 13.5832
37 -. 7143D-03 -.10110-01 0.11420-02 0.10140-01 13.7141

38 0.39530-02 0.59350-02 -.10840-02 0.71310-02 14.1604
39 -.14140-01 0.32130-02 -.49660-02 0.1451D-01 15.6523

40 0.1'07D-02 0.10440-01 -.2294D-03 0.10620-01 16.0724

41 -.67800-02 -.22200-02 0.14130-01 0.7134D-02 16.5248
42 0.3353D-02 -.9540D-03 -.13750-01 0.39690-02 16.7453
43 0.11320-03 -.8405D-02 -.17390-02 0.84060-02 17.1555

44 0.32440-02 -.11680-02 0.71740-02 0.3448D-02 17.8203
45 -.64390-03 -.14460-01 -.1545D-02 0.1447D-01 19.0713

46 -.22660-01 0.16690-01 0.52170-01 0,26140-01 23.7716
47 0.90530-02 0.37110-01 -.22930-01 0.3520D-01 24..1040

48 0.26880-03 0.12050-01 -.33170-02 0.12060-01 25.'P8)

49 -.1444D-01 -.10420-01 0.23820-02 0.17810-01 26.3625

50 0.9416D-14 -.62570-14 -.14850-14 0.11310-13 26.4292
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physical parameters which will cause a variation in the modal characteristics.
Since the effects of modelling and manufacturing errors are of primary
concern, the latter method was chosen. Two sets of physical parameter
variations are presented here. Modal analyses including the modal LOS
error were conducted using NASTRAN. The resulting natural frequencies and
mode shapes are given and compared with the original system.

Two sets of parameter variations are summarized in Table 9r7. The
changes are confined to the optical support structure and involve mass
distribution changes on the upper optical support truss and stiffness
changes in the metering truss. These parameters were chosen based on their
impact on LOS error in several critical modes. The amount of variation is
driven by the desire to vary the natural frequency by 10%.

Dynamic analyses were conducted on both perturbed models using NASTRAN.
The resulting natural frequencies are given in Table 9-8 along with those
of the original model. The modal LOS errors about the X and Y axes and
the overall magnitude are given for all three cases in Table 9-9. The
results show that both sets of parameter variations had more impact on the
higher frequency modes because the upper support truss and the metering truss
contain a higher percentage of the total energy in these modes than in the
lower modes.

The perturbed models presented here are, of course, two point designs
from an infinite number of possible parameter variations. In order to fully
evaluate the stability limits of a particular control system design, it may
be necessary to evaluate several perturbed models. Another type of variation
which must also be considered are the changes in amplitude and frequency
of the system disturbances.

9.6 System Disturbances and Tolerances

9.6.1 Description

The disturbance model consists of two sinusoidal forces which are
applied to a point on the optical support structure and a point on the
equipment section. The location, direction magnitude and frequency are
given in Figure 9-8. These forces simulate on-board vibrating equipment.
It is assumed that both forces will act simultaneously.

The tolerances for system line of sight error and defocus are

LOS = 1.0 x 10-6 radians

Defocus = .50 x 10- 3 meters
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Table 9-7.

* Mass changes

Node Original Case #2 - 2A Case #4 - 4A
Mass

27 375.0 350.0 375.0

28 375.0 350.0 350.0

29 375.0 350.0 350.0

30 375.0 350.0 350.0

32 500.0 500.0 550.0

33 500.0 550.0 450.0

34 250.0 300.0 300.0

35 250.0 250.0 200.0

e Stiffness changes

Section Property #

Memb. NA NB -_ ___
Case 2A Case 4A

76 8 14 1 1

80 9 15 1 1

81 11 17 1 1

85 13 19 1 2

99 15 32 1 2

101 17 33 1 2

o Section Properties

#1 - 25cm dia. x 0.10 cm round #2 - 25cm dia. x 0.025 cm round
tube tube

0-4 2 0-4 2
A = 7.823 x 10 m A = 1.962 x10 m

10-6 4 1-6 4
I = 6.063 x 10 6 m I = 1.529 x10 m

05 4 0- 6 4
J = 1.213 x 10 m J = 3.059x 106 m
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Table 9-8

Mode Original Case #2 Case #4

1-6 0.0 0.0 0.0

7 .1455 .1455 .1455

8 .2632 .2616 .2632

9 .3173 .3172 .3173

10 .3329 .3328 .3329

11 .4432 .4432 .4432
12 .5779 .5764 .5778

13 .5814 .5815 .5815

14 1.224 1.224 1.224

15 1.300 1.301 1.299

16 1.348 1.348 1.348

17 1.721 1.764 1.699
18 1.819 1.819 1.819
19 1.819 1.819 1.819

20 1.889 1.889 1.889

21 2.363 2.430 2.339

22 2.990 2.990 2.989

23 3.176 3.176 3.176

24 3.387 3.387 3.387

25 5,162 5.162 5.162

26 5.260 5.260 5.260

27 7.877 7.877 6.798

28 8.117 8.360 7.877

29 8.360 8.567 8.360

30 8.571 8.813 8.813

31 8.813 8.813 8.813

32 8.813 9.522 9.246

33 11.346 11.346 11.346

34 11.498 11.575 11.469

35 12.726 12.882 12.492

36 13.583 13.583 13.046

37 13.714 13.872 13.583

38 14.160 14.278 13.634

39 15.652 16.323 14.212

40 16.072 16.q4 15.262

41 16.525 17.077 15.693

42 16.545 17.266 15.884

43 17.155 19.321 16.724

44 17.828 20.064 17.897

45 19.071 20.994 20.035
46 23.772 25.071 23.819
47 24.419 25.204 24.671

48 25.909 25.952 25.482

49 26.363 26.429 26.201

50 26.429 27.322 26.429
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NODE 37 DOF 3

Figure 9-8.
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9.6.2 Open Loop Performance

To demonstrate that structural control is required, the open loop
performance is shown in Figure 9-9. In this analysis each mode is assumed
to have 0.1% critical damping and there is no additional isolator damping.
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The steady state amplitude of the modal response is defined as

AMPL = AOid (10-1)

2C WQ)2+ (W2 S1p2)2

The steady state LOS error amplitude is obtained by multiplying the above,
AMPL, by the LOS error influence (p1 ,LOS) for the ith mode.

EL = Oi,LOS AMPL (10-2)

10.3 Sinusoidal Disturbance Impact on LOS Error

As described in Section 9, two sinusoidal disturbance functions were
used to degrade the LOS

A1 = 200 N

f = AI sin it i = 10 Hz

at node #37

' 2 = 400 N

f2 = A2 sin 22t  0 2 = 5 Hz

at node #46

The performance requirement for the LOS error is

( 1 radian ( LOS error about X-axis
CiLOS 1 I radian LOS error about Y-axis

500 p meters defocus error in Z-direction

The asterisk in Table 10-1 shows that 19 of 50 modes have a steady-state LOS
amplitude greater than the performance requirement. Note that modes I to 6
are the rigid body modes. The defocus error always meets the performance.
The definitions for the headings in Table 10-1 are as follows:

LOSXj = LOS error about X-axis due to disturbance f. ;
j = 1,2 (see equation (10-1,2)) i

LOSYj = LOS error about Y-axis due to disturbance f. ;
j = 1,2 (see equation (10-1,2))
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DEFOCUSj LOS defocus error in Z-direction due to
disturbance fj ; j 1,2 (see equation (10-1,2))

LOS. V(LOSXj)2 + (LOSYj)2 ; j = 1,2

LOS = (LOS1) + (LOS2)

10.4 Modal Damping Requirements

The damping requirements for each mode are determined by solving
equations (10-1), (10-2) for i and specifying the desired performance
amplitude, cLOS'

1 2 idiLOS

- w Q E LOS )(W ' )

Table 10-2 shows the results for the disturbance f at node #37 while

Table 10-3 is for disturbance f2 at node #46. Ignoring the rigid body,

modes I to 6, it can be seen that there are numerous damping ratios >> 1.
In order to obtain some insight, a frequency response was determined (Fig. 10-1)
between disturbance f and the LOSX. Note the solid line at 62.8 rad/sec
(10 Hz). Since this line intersects the frequency response at a location
removed from the peaks, just adding damping will only affect the magnitude
of the response peaks and not the general shape of the frequency response
in the neighborhood of the disturbance frequency.

10.5 Summary

Preliminary results show that the defocus error is not degraded by
the two sinusoidal disturbances. Ignoring the rigid body, 17 modes degrade
the LOS error about the X and Y axes. Furthermore, the addition of damping
to individual modes is not sufficient to suppress a sinusoidal disturbance
impact on LOS error.
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Table 10-2. Damping ratio required to meet LOS performance (f1 ).

DAMPING RATIO
ro3E FREQ AMPL LOSX LOSY DEFOCUS X Y Z

(riS) (r) (r) m)
1 0.000382 -.670C0-04 -.15150-08 -.25340-07 -.62470-13

O.CCO409 .52710-03 -.8320D-08 .444:D-09 -.93190-11
3 0.000420 -. 596:0-04 -.Z93'0-07 .18680-08 .57:60-13
4 0.000436 -.41970-04 -.48940-08 -.484D-08 -.18320-14
5 0.0004,0 .17750-03 -.6Z173-08 -.14400-C6 -.4831D-12
6 0.0^0472 .13493-03 -.10570-C6 .63090-03 .4240-13
7 0.9144C6 -.76720-C4 .202D-10 -.25030-07 .37o3D-11
8 1.653311 .4C55-04 .14260-10 -.e750D-08 -.44910-10
9 1.99356 -,6k23-03 .39470-09 .9356D-10 .1374D-08

10 2.0qI,305 .52410-04 -.12020-07 .23CD-10 -.768-0-11
11 2.754732 .3997D-03 .Z415D-08 .42e!0-09 .6230D-08
!2 3.63032Z -. 15740-03 -. 115:0-06 .1065-03 -. 3000D-09
13 3.653243 -.179;3-03 -.4191D-09 -.15710-06 .76920-10
14 7.63Z052 .71219-05 -.73120-11 -.16830-C8 -.3441D-12
15 8.16q607 -. 1o020-C4 -.6024D-10 .C4340-C8 .124D-09
16 R.466S74 .b780D-04 -. 1077D-07 -.9573D-10 .63470-09
17 10.S13030 .43660-04 .1150-08 -.12119-06 .Zl6O-C3
13 11.427213 .43210-05 .1041D-10 -.2C010-11 .10590-1O
19 11.4Z7431 -.3322D-05 -. 33260-10 .75560-11 .1825D-11
20 11.869;40 .11600-13 -. 4,1730-27 -. 40510-23 .35143-28
21 14.C50258 -. 72330-03 -.161-10-07 -.994;D-05 -.65300-08 19.77
22 18.753633 -. Z4300-04 -.32700-03 -.66ID-10 .36653-09
:3 19.955563 .160D-04 -.81ZD-10 -.45#10-08 .495±0-10
24 1.2571 .25900-04 .14420-10 -.11750-07 -. iio:0-1o
25 32.431671 .15930-14 -.25910-28 -.7C070-30 .4144D-29
6 33.051529 ,28O0-0S -.97100-10 -. 2C0e0-21 .13570-10

27 49.4c2233 -.63520-16 -.7110D-31 -.497C0-32 .6555D-32
28 50.93-269 .765ZD-03 -.3271D-06 -.13010-05 -.140D-06 .1750
29 52.527542 -.13510-C4 -.303D-o3 -.645CD-11 .49130-10
30 53.e:C15 -.6533D-03 -.12310-04 .73010-08 -.70620-06 1.899
31 55.376602 .74620-06 -.28520-10 -.217C0-1Z -.28020-11
52 55.376617 .28410-05 -.12770-09 .2Z110-12 .2713D-11
33 71. 2 051, -.1697D-05 -. 63260-11 -.1527D-10 .E8340-12
34 72.242%C6 .404C3-03 -.49600-06 .757ZD-06 .1612D-06
35 79.95%23 -.69410-03 -.761SD-C5 .39300-06 .11C60-04 1.838
3 85.3456Z7 -.46400-04 -.97330-09 -.34b;0-07 .3155D-08
37 85.1685i8 .62470-03 -.446-0-06 -.63170-05 .71360-06 2.003
33 33.972637 -.9951D-04 -.393.0-06 -.53-05-06 .1G7C0-06
39 03.346C39 -.80270-04 .11350-05 -.:5730-06 .39E5D-06 .Z490
40 100.935?77 -.65340-04 -.12460-06 -.63:

4
-Co .14990-07

41 103.820430 .1307D-03 -.826C0-06 -.29020-06 .1i460-05
42 105.214C50 -.24330-03 -.93750-06 .23210-06 .33450-05
43 107.791077 -.20660-03 -.233:D-07 .17060-05 .35920-06 .8038
44 112.018337 .1754D-03 .56900-06 -. ,C490-06 .1253D-5
45 119.828278 .12830-C3. -.8Z600-07 -.1855D-05 -.1V83D-06 1.080
46 149.13o154C -. 316i-03 .52493-07 -.38550-07 -. 1ZD80-06
47 153.397614 .20210-04 .103:D-06 .75010-06 -.46350-06
48 162.793466 -.Z870-04 -.77oZ0-08 -.3-3C0-06 .9579D-07
49 165.64i0%6 -.22530-03 .325ZD-05 .2340-05 -.53660-C6 3.492 2.398
50 166.05q479 .10660-15 .10C40-29 -.6672D-30 -.1534D-30
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Table 10-3. Damping ratio required to meet LOS performance (f2).

DAMPING RATIO
MODE FREQ AIPL LOSX LOSY DEFOCUS X y z

(r/s) Cr) Cr) (m)

1 0.00352 -.5586D-03 -.15110-07 -.211OD-06 -.5202D-12
2 0.000,09 .423OD-02 -.668!D-07 .356qD-C8 -.707qD-10
3 0.00C420 -.87630-03 -.4318D-06 .27460-07 .84170-12
4 0.000436 -.43030-03 -.50170-07 -.49700-07 -.1878)-13
5 0.000460 .1;4S9-02 -.50730-07 -.11750-05 -.39420-11 .21050+05
6 0.000472 .17140-02 -.13430-05 .8016D-07 .11960-11 .29830.05
7 0.914426 .25060-02 -.66180-09 .81750-06 -.12290-09
8 1.653111 -.3S470-04 -.13430-10 .823QO-08 .42290-10
9 1.9935q6 -. 302-03 .45550-09 .10460-09 .15870-03

10 2.091605 .5721D-03 - .131:0-06 .Z5ID-09 -.83910-10
11 C.784732 -.Z05-0-02 -.124ZD-07 -.2192D-03 -.3205D-07
12 3.630,A2 -. 175qD-02 -. 1294D-05 .119CD-07 -.33530-08 3.508
13 3.653Z43 -. 21730-03 -.5063D-09 -.1897D-06 .92939-10

14 7.6S9052 .95470-0Z -.98C0D-08 -.22550-05 -.46120-09 3.883
15 8.169607 .11330-03 .42600-09 -.1721D-07 -.87970-09
16 8.466874 -.22C2O-01 .3500D-05 .3112D-07 -.2062D-06 5.771
17 10.613030 -.481q0-06 -.13200-10 .13380-08 .238!D-10
18 11.4^7218 -.14400-02 -.37310-05 .716ED-09 -.3794D-08
19 11.47431 '.4760-03 .54S,0-08 -.1127D-03 -.2618D-09
20 1i.869 40 -.80460-11 .,8050-Z4 .^8310-25 -.243Vt-25
21 14.e50258 -.56650-03 -.12680-07 -.7792D-05 -.51140-08 6.348
22 18.783630 .54340-01 .73110-05 .14310-06 -.82C2D-C6 3.891
23 19.955063 .112ID-03 -.49110-09 -.29340-07 .2si-D-09
24 21.282791 -.35433-01 -.20030-07 .16300-04 .1530-07 6.497
25 32.431671 -.75850-10 .13760-23 .33360-25 -.19730-Z4
:6 33.051529 -.84530-01 .Z87C0-05 .5929-07 -.4010-06 .1366
Z7 49.4922;3 .10640-12 .11C40-27 .77260-29 -.10233-28
28 50.9c;C69 -.45130-05 .192co-08 .76753-03 .8soc0-09
29 52.527542 .8525D-02 .Z57;D-05 .42140-08 -.3C100-07 1.273
30 53.850815 -.1452D-03 -.2712-05 .160'7-08 -.15560-C6 1.425
31 55.376602 .2056D-03 -.7973D-08 -.60890-10 -.78340-09
32 55.376617 -.59?80-03 .26910-07 -.46590-10 -.57170-09
33 71.290451 -.31230-07 -.1175D-12 -.280O0-12 .16360-13
34 72.242966 .79440-C5 -.97330-08 .14360-07 .31630-08
35 79.953420 -.33540-04 -.36810-C6 .18990-07 .53440-06
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39 93.346039 .12270-04 -.17360-06 .39430-07 -.60950-07
40 100.955977 -.1064D-0C4 -. C228-07 -.11110-06 .24400-03
41 103.85430 -.53Z6D-05 .36110-07 .11820-07 -.75230-07
42 105.214C50 .43350-05 .16650-07 -.41300-08 -.5952D-07
43 107.791077 .711D-05 .80590-09 -.59830-07 -.1238D-07
44 112.018387 -.4813D-05 -.15720-07 .56620-08 -.34770-07
45 119.826278 -.Z0770-05 .13370-03 .30030-07 .32100-08
C6 149.361542 .297ED-06 -.67482-08 .4970D-08 .15540-07
47 153.397614 -.1185D-05 -.1074D-07 -.4300-07 .27180-07
48 162.790456 -.2685D-06 -.72180-10 -.32360-08 .89070-09
49 165.640636 -.5027D-06 .72520-08 .5240D-08 -.1197D-03
50 166.059479 -.11910-30 .7916D-31 .1879D-31
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